Marcelo A Catalan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8877657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nocturnal Light Pollution Induces Weight Gain in Mice and Reshapes the Structure, Functions, and Interactions of Their Colonic Microbiota. International Journal of Molecular Sciences, 2022, 23, 1673.	1.8	3
2	Novel Oxime Synthesized from a Natural Product of Senecio nutans SCh. Bip. (Asteraceae) Enhances Vascular Relaxation in Rats by an Endothelium-Independent Mechanism. Molecules, 2022, 27, 3333.	1.7	2
3	Activation of the Ae4 (Slc4a9) cation-driven Cl-/HCO3- exchanger by the cAMP-dependent protein kinase (PKA) in salivary gland acinar cells. American Journal of Physiology - Renal Physiology, 2021, 321, G628-G638.	1.6	1
4	Short Chain Fatty Acids Effect on Chloride Channel ClC-2 as a Possible Mechanism for Lubiprostone Intestinal Action. Cells, 2020, 9, 1781.	1.8	4
5	Withaferin A suppresses breast cancer cell proliferation by inhibition of the two-pore domain potassium (K2P9) channel TASK-3. Biomedicine and Pharmacotherapy, 2020, 129, 110383.	2.5	21
6	Physiological cAMP-elevating secretagogues differentially regulate fluid and protein secretions in mouse submandibular and sublingual glands. American Journal of Physiology - Cell Physiology, 2019, 316, C690-C697.	2.1	11
7	A Mathematical Model Supports a Key Role for Ae4 (Slc4a9) in Salivary Gland Secretion. Bulletin of Mathematical Biology, 2018, 80, 255-282.	0.9	13
8	The Insensitivity of TASK-3 K2P Channels to External Tetraethylammonium (TEA) Partially Depends on the Cap Structure. International Journal of Molecular Sciences, 2018, 19, 2437.	1.8	8
9	Late responses to adenoviral-mediated transfer of the aquaporin-1 gene for radiation-induced salivary hypofunction. Gene Therapy, 2017, 24, 176-186.	2.3	43
10	The Role of Na:K:2Cl Cotransporter 1 (NKCC1/SLC12A2) in Dental Epithelium during Enamel Formation in Mice. Frontiers in Physiology, 2017, 8, 924.	1.3	16
11	Ae4 (Slc4a9) is an electroneutral monovalent cation-dependent Clâ^'/HCO3â^' exchanger. Journal of General Physiology, 2016, 147, 423-436.	0.9	37
12	A fluid secretion pathway unmasked by acinar-specific <i>Tmem16A</i> gene ablation in the adult mouse salivary gland. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2263-2268.	3.3	67
13	Functional Differences in the Acinar Cells of the Murine Major Salivary Glands. Journal of Dental Research, 2015, 94, 715-721.	2.5	55
14	Ae4 (Slc4a9) Anion Exchanger Drives Clâ^' Uptake-dependent Fluid Secretion by Mouse Submandibular Gland Acinar Cells. Journal of Biological Chemistry, 2015, 290, 10677-10688.	1.6	30
15	Ca2+-dependent K+ channels in exocrine salivary glands. Cell Calcium, 2014, 55, 362-368.	1.1	22
16	Association of Bone Morphogenetic Protein 6 With Exocrine Gland Dysfunction in Patients With Sjögren's Syndrome and in Mice. Arthritis and Rheumatism, 2013, 65, 3228-3238.	6.7	37
17	TRPV4 activation in mouse submandibular gland modulates Ca2+ influx and salivation. American Journal of Physiology - Renal Physiology, 2012, 303, G1365-G1372.	1.6	11
18	A quantitative analysis of electrolyte exchange in the salivary duct. American Journal of Physiology - Renal Physiology, 2012, 303, G1153-G1163.	1.6	20

MARCELO A CATALAN

#	Article	IF	CITATIONS
19	Severe Defects in Absorptive Ion Transport in Distal Colons of Mice That Lack ClC-2 Channels. Gastroenterology, 2012, 142, 346-354.	0.6	40
20	Salivary Cland Secretion. , 2012, , 1229-1249.		0
21	Temporal changes in salivary glands of nonâ€obese diabetic mice as a model for Sjögren's syndrome. Oral Diseases, 2012, 18, 96-106.	1.5	47
22	Ascl3 knockout and cell ablation models reveal complexity of salivary gland maintenance and regeneration. Developmental Biology, 2011, 353, 186-193.	0.9	46
23	Elevated Incidence of Dental Caries in a Mouse Model of Cystic Fibrosis. PLoS ONE, 2011, 6, e16549.	1.1	36
24	Cftr and ENaC ion channels mediate NaCl absorption in the mouse submandibular gland. Journal of Physiology, 2010, 588, 713-724.	1.3	55
25	Tmem16A Encodes the Ca2+-activated Clâ^' Channel in Mouse Submandibular Salivary Gland Acinar Cells. Journal of Biological Chemistry, 2010, 285, 12990-13001.	1.6	174
26	The salivary gland fluid secretion mechanism. Journal of Medical Investigation, 2009, 56, 192-196.	0.2	70
27	Purinergic P2X7 Receptors Mediate ATP-induced Saliva Secretion by the Mouse Submandibular Gland. Journal of Biological Chemistry, 2009, 284, 4815-4822.	1.6	71
28	A Variant of the Ca2+-Activated Cl Channel Best3 is Expressed in Mouse Exocrine Glands. Journal of Membrane Biology, 2008, 222, 43-54.	1.0	21
29	<i>Clcn2</i> encodes the hyperpolarization-activated chloride channel in the ducts of mouse salivary glands. American Journal of Physiology - Renal Physiology, 2008, 295, G1058-G1067.	1.6	29
30	Removal of gating in voltage-dependent CIC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain. Journal of Physiology, 2006, 572, 173-181.	1.3	35
31	Basolateral localization of native ClC-2 chloride channels in absorptive intestinal epithelial cells and basolateral sorting encoded by a CBS-2 domain di-leucine motif. Journal of Cell Science, 2005, 118, 4243-4252.	1.2	88
32	The voltage-dependent ClC-2 chloride channel has a dual gating mechanism. Journal of Physiology, 2004, 555, 671-682.	1.3	77
33	Basolateral ClC-2 chloride channels in surface colon epithelium: regulation by a direct effect of intracellular chlorideã~†. Gastroenterology, 2004, 126, 1104-1114.	0.6	80
34	A Conserved Poreâ€Lining Glutamate as a Voltage―and Chlorideâ€Dependent Gate in the ClCâ€2 Chloride Channel. Journal of Physiology, 2003, 553, 873-879.	1.3	77
35	ClC-2 in guinea pig colon: mRNA, immunolabeling, and functional evidence for surface epithelium localization. American Journal of Physiology - Renal Physiology, 2002, 283, G1004-G1013.	1.6	60
36	Nonselective cation channels as effectors of free radical–induced rat liver cell necrosis. Hepatology, 2001, 33, 114-122.	3.6	57