
jake e Barralet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8877349/publications.pdf Version: 2024-02-01

IAKE E RADDALET

#	Article	IF	CITATIONS
1	Aqueous decomposition behavior of solid peroxides: Effect of pH and buffer composition on oxygen and hydrogen peroxide formation. Acta Biomaterialia, 2022, 145, 390-402.	8.3	19
2	Skeletal regeneration for segmental bone loss: Vascularised grafts, analogues and surrogates. Acta Biomaterialia, 2021, 136, 37-55.	8.3	24
3	Biomaterialâ€Induction of a Transplantable Angiosome. Advanced Functional Materials, 2020, 30, 1905115.	14.9	6
4	Dispersion modeling in pore networks: A comparison of common pore-scale models and alternative approaches. Journal of Contaminant Hydrology, 2020, 228, 103578.	3.3	16
5	Effects of Oxygen and Glucose on Bone Marrow Mesenchymal Stem Cell Culture. Advanced Biology, 2020, 4, e2000094.	3.0	4
6	2D hematene, a bioresorbable electrocatalytic support for glucose oxidation. 2D Materials, 2020, 7, 025044.	4.4	5
7	Tailoring Carbon Nanotube Microsphere Architectures with Controlled Porosity. Advanced Functional Materials, 2019, 29, 1903983.	14.9	15
8	Bioinorganics and Wound Healing. Advanced Healthcare Materials, 2019, 8, e1900764.	7.6	80
9	Treatment of Criticalâ€6ized Calvarial Defects in Rats with Preimplanted Transplants. Advanced Healthcare Materials, 2019, 8, e1900722.	7.6	5
10	Selective exposure of platinum catalyst embedded in protective oxide layer on conductive titanium carbide support. Materials Today Energy, 2019, 13, 353-361.	4.7	1
11	Materialâ€Induced Venosomeâ€Supported Bone Tubes. Advanced Science, 2019, 6, 1900844.	11.2	16
12	Exploring the Impact of Electrode Microstructure on Redox Flow Battery Performance Using a Multiphysics Pore Network Model. Journal of the Electrochemical Society, 2019, 166, A2121-A2130.	2.9	44
13	Top-down bottom-up graphene synthesis. Nano Futures, 2019, 3, 042003.	2.2	39
14	Best practices for enhancing surgical research: a perspective from the Canadian Association of Chairs of Surgical Research. Canadian Journal of Surgery, 2019, 62, 488-498.	1.2	5
15	Cavitation Mediated 3D Microstructured Architectures from Nanocarbon. Advanced Functional Materials, 2018, 28, 1706832.	14.9	9
16	A pilot study: Alternative biomaterials in critical sized bone defect treatment. Injury, 2018, 49, 523-531.	1.7	25
17	Composite Carbon Nanotube Microsphere Coatings for Use as Electrode Supports. Advanced Functional Materials, 2018, 28, 1803713.	14.9	14
18	Preservation of Blood Vessels with an Oxygen Generating Composite. Advanced Healthcare Materials, 2018, 7, e1701338.	7.6	8

#	Article	IF	CITATIONS
19	Powerful amorphous mixed metal catalyst for efficient water-oxidation. Materials Today Energy, 2018, 9, 247-253.	4.7	8
20	Powder Conductivity Assessment Using a Disposable 3D Printed Device. Electroanalysis, 2018, 30, 1897-1901.	2.9	2
21	Graphene modified nanosized Ag electrocomposites. Materials Research Bulletin, 2017, 89, 42-50.	5.2	10
22	Mimicking oxygen delivery and waste removal functions of blood. Advanced Drug Delivery Reviews, 2017, 122, 84-104.	13.7	37
23	Effect of processing conditions of dicalcium phosphate cements on graft resorption and bone formation. Acta Biomaterialia, 2017, 53, 526-535.	8.3	35
24	Hypoxia Biomimicry to Enhance Monetite Bone Defect Repair. Tissue Engineering - Part A, 2017, 23, 1372-1381.	3.1	26
25	Electrically wired enzyme/TiO2 composite for glucose detection. Materials Science and Engineering C, 2017, 76, 991-996.	7.3	11
26	Intra-tumor delivery of zoledronate mitigates metastasis-induced osteolysis superior to systemic administration. Journal of Bone Oncology, 2017, 6, 8-15.	2.4	9
27	Intrinsic 3D Prestressing: A New Route for Increasing Strength and Improving Toughness of Hybrid Inorganic Biocements. Advanced Materials, 2017, 29, 1701035.	21.0	12
28	Pore network modeling of reaction-diffusion in hierarchical porous particles: The effects of microstructure. Chemical Engineering Journal, 2017, 330, 1002-1011.	12.7	58
29	Phytic acid as alternative setting retarder enhanced biological performance of dicalcium phosphate cement in vitro. Scientific Reports, 2017, 7, 558.	3.3	22
30	In vitro ion adsorption and cytocompatibility of dicalcium phosphate ceramics. Biomaterials Research, 2017, 21, 10.	6.9	18
31	Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomaterialia, 2017, 48, 247-257.	8.3	129
32	Regulation of Osteoclast Growth and Fusion by mTOR/raptor and mTOR/rictor/Akt. Frontiers in Cell and Developmental Biology, 2017, 5, 54.	3.7	42
33	The Effects of Crystal Phase and Particle Morphology of Calcium Phosphates on Proliferation and Differentiation of Human Mesenchymal Stromal Cells. Advanced Healthcare Materials, 2016, 5, 1775-1785.	7.6	17
34	Biomaterial‧tabilized Soft Tissue Healing for Healing of Critical‧ized Bone Defects: the Masquelet Technique. Advanced Healthcare Materials, 2016, 5, 630-640.	7.6	31
35	Controlling Bone Graft Substitute Microstructure to Improve Bone Augmentation. Advanced Healthcare Materials, 2016, 5, 1646-1655.	7.6	27
36	Electrically Bloomed Platinum Nanoflowers on Exfoliated Graphene: An Efficient Alcohol Oxidation Catalyst. Journal of the Electrochemical Society, 2016, 163, D615-D621.	2.9	14

#	Article	IF	CITATIONS
37	Local delivery of iron chelators reduces in vivo remodeling of a calcium phosphate bone graft substitute. Acta Biomaterialia, 2016, 42, 411-419.	8.3	20
38	Two-Dimensional Magnesium Phosphate Nanosheets Form Highly Thixotropic Gels That Up-Regulate Bone Formation. Nano Letters, 2016, 16, 4779-4787.	9.1	60
39	Development of Highly Functional Biomaterials by Decoupling and Recombining Material Properties. Advanced Materials, 2016, 28, 1803-1808.	21.0	17
40	Electrocatalytic Oxygen Reduction Performance of Silver Nanoparticle Decorated Electrochemically Exfoliated Graphene. Langmuir, 2015, 31, 9718-9727.	3.5	27
41	Characterization of biomimetic calcium phosphate labeled with fluorescent dextran for quantification of osteoclastic activity. Acta Biomaterialia, 2015, 20, 140-146.	8.3	4
42	Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materials. Acta Biomaterialia, 2015, 17, 1-15.	8.3	56
43	Chelate Bonding Mechanism in a Novel Magnesium Phosphate Bone Cement. Journal of the American Ceramic Society, 2015, 98, 694-697.	3.8	26
44	Hypoxia signalling manipulation for bone regeneration. Expert Reviews in Molecular Medicine, 2015, 17, e6.	3.9	59
45	Chelate setting of alkali ion substituted calcium phosphates. Ceramics International, 2015, 41, 10010-10017.	4.8	15
46	Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling. Biomaterials, 2015, 54, 126-135.	11.4	41
47	Silk fibroin hydroxyapatite composite thermal stabilisation of carbonic anhydrase. Journal of Materials Chemistry A, 2015, 3, 19282-19287.	10.3	16
48	In vitro degradation and in vivo resorption of dicalcium phosphate cement based grafts. Acta Biomaterialia, 2015, 26, 338-346.	8.3	72
49	Axial vascularization of engineered bone for maxillofacial defects. International Journal of Oral and Maxillofacial Surgery, 2015, 44, e108-e109.	1.5	0
50	Dual-setting brushite–silica gel cements. Acta Biomaterialia, 2015, 11, 467-476.	8.3	27
51	Fibril formation pH controls intrafibrillar collagen biomineralization inÂvitro and inÂvivo. Biomaterials, 2015, 37, 252-259.	11.4	40
52	Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials, 2015, 37, 395-404.	11.4	334
53	A new class of bioactive glasses: Calcium–magnesium sulfophosphates. Journal of Biomedical Materials Research - Part A, 2014, 102, 2842-2848.	4.0	9
54	Resveratrol As Anti-Aging Therapy for Age-Related Bone Loss. Rejuvenation Research, 2014, 17, 439-445.	1.8	41

#	Article	IF	CITATIONS
55	Hierarchical Stable Enzyme Microenvironments for Highâ€Temperature Stability in Amine Solvents. Particle and Particle Systems Characterization, 2014, 31, 1091-1096.	2.3	7
56	Melatonin Dietary Supplement as an Anti-Aging Therapy for Age-Related Bone Loss. Rejuvenation Research, 2014, 17, 341-346.	1.8	47
57	Reproducible quantification of osteoclastic activity: Characterization of a biomimetic calcium phosphate assay. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 903-912.	3.4	18
58	Self-assembled photoactive heterojunction phase gradient. Journal of Materials Chemistry A, 2014, 2, 8868-8874.	10.3	2
59	Hydrocaffeic acid–chitosan nanoparticles with enhanced stability, mucoadhesion and permeation properties. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 1026-1037.	4.3	58
60	Electropolymerized Carbonic Anhydrase Immobilization for Carbon Dioxide Capture. Langmuir, 2014, 30, 6915-6919.	3.5	28
61	Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site. Biomaterials, 2014, 35, 5436-5445.	11.4	92
62	The effect of amorphous pyrophosphate on calcium phosphate cement resorption and bone generation. Biomaterials, 2013, 34, 6631-6637.	11.4	77
63	Amphiphilic peptide-loaded nanofibrous calcium phosphate microspheres promote hemostasis in vivo. Acta Biomaterialia, 2013, 9, 9194-9200.	8.3	31
64	An airway smooth muscle cell niche under physiological pulsatile flow culture using a tubular dense collagen construct. Biomaterials, 2013, 34, 1954-1966.	11.4	29
65	Moderate excess of pyruvate augments osteoclastogenesis. Biology Open, 2013, 2, 387-395.	1.2	16
66	Ultrasonic Phosphate Bonding of Nanoparticles. Advanced Materials, 2013, 25, 5953-5958.	21.0	11
67	Perfluorodecalin and bone regeneration. , 2013, 25, 22-36.		20
68	Mollusk Glue Inspired Mucoadhesives for Biomedical Applications. Langmuir, 2012, 28, 14010-14017.	3.5	84
69	The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: Brushite vs. monetite. Acta Biomaterialia, 2012, 8, 3161-3169.	8.3	109
70	Low temperature fabrication of spherical brushite granules by cement paste emulsion. Journal of Materials Science: Materials in Medicine, 2012, 23, 2631-2637.	3.6	9
71	Stabilization of Amorphous Calcium Carbonate with Nanofibrillar Biopolymers. Advanced Functional Materials, 2012, 22, 3460-3469.	14.9	25
72	Dicalcium phosphate cements: Brushite and monetite. Acta Biomaterialia, 2012, 8, 474-487.	8.3	352

#	Article	IF	CITATIONS
73	Silk fibroin derived polypeptide-induced biomineralization of collagen. Biomaterials, 2012, 33, 102-108.	11.4	118
74	Collagen gel fibrillar density dictates the extent of mineralization in vitro. Soft Matter, 2011, 7, 9898.	2.7	34
75	The Role of the Airâ^'Liquid Interface in Protein-Mediated Biomineralization of Calcium Carbonate. Crystal Growth and Design, 2011, 11, 803-810.	3.0	9
76	Vertical bone augmentation with 3Dâ€synthetic monetite blocks in the rabbit calvaria. Journal of Clinical Periodontology, 2011, 38, 1147-1153.	4.9	68
77	Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials, 2011, 32, 8915-8926.	11.4	176
78	Mesenchymal stem cellâ€seeded multilayered dense collagenâ€silk fibroin hybrid for tissue engineering applications. Biotechnology Journal, 2011, 6, 1198-1207.	3.5	33
79	Silver-doped calcium phosphate cements with antimicrobial activity. Acta Biomaterialia, 2011, 7, 4064-4070.	8.3	162
80	Bioinorganics and biomaterials: Bone repair. Acta Biomaterialia, 2011, 7, 3013-3026.	8.3	364
81	Serum Protein Controlled Nanoparticle Synthesis. Advanced Functional Materials, 2011, 21, 2968-2977.	14.9	16
82	Interferon-γ plays a role in bone formation in vivo and rescues osteoporosis in ovariectomized mice. Journal of Bone and Mineral Research, 2011, 26, 1472-1483.	2.8	133
83	Biocompatibility of magnesium phosphate minerals and their stability under physiological conditions. Acta Biomaterialia, 2011, 7, 2678-2685.	8.3	145
84	Sustained steroid release in pulmonary inflammation model. Biomaterials, 2010, 31, 6050-6059.	11.4	5
85	<i>In vitro</i> antibacterial efficacy of tetracycline hydrochloride adsorbed onto Bioâ€Oss® bone graft. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 93B, 394-400.	3.4	30
86	Simultaneous Immobilization of Bioactives During 3D Powder Printing of Bioceramic Drugâ€Release Matrices. Advanced Functional Materials, 2010, 20, 1585-1591.	14.9	89
87	Collagen Biomineralization In Vivo by Sustained Release of Inorganic Phosphate Ions. Advanced Materials, 2010, 22, 1858-1862.	21.0	70
88	Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement. Acta Biomaterialia, 2010, 6, 1529-1535.	8.3	80
89	The stimulation of angiogenesis and collagen deposition by copper. Biomaterials, 2010, 31, 824-831.	11.4	304
90	Resorption of monetite granules in alveolar bone defects in human patients. Biomaterials, 2010, 31, 2762-2769.	11.4	111

#	Article	IF	CITATIONS
91	Passive and Active <i>In Vitro</i> Resorption of Calcium and Magnesium Phosphate Cements by Osteoclastic Cells. Tissue Engineering - Part A, 2010, 16, 3687-3695.	3.1	108
92	Three-Dimensional Mineralization of Dense Nanofibrillar Collagenâ^'Bioglass Hybrid Scaffolds. Biomacromolecules, 2010, 11, 1470-1479.	5.4	142
93	Ascorbic acid accelerates osteoclast formation and death. Bone, 2010, 46, 1336-1343.	2.9	38
94	Ideal Amphipathic Peptdes Coupled to Nanofibrous Micropheres Reduce Hemorrhage In Vivo. Blood, 2010, 116, 2204-2204.	1.4	0
95	Angiogenesis in Calcium Phosphate Scaffolds by Inorganic Copper Ion Release. Tissue Engineering - Part A, 2009, 15, 1601-1609.	3.1	204
96	Influence of calcium phosphate crystal morphology on the adhesion, spreading, and growth of bone derived cells. Journal of Biomedical Materials Research - Part A, 2009, 90A, 972-980.	4.0	14
97	Ion adsorption behaviour of hydroxyapatite with different crystallinities. Colloids and Surfaces B: Biointerfaces, 2009, 74, 91-95.	5.0	128
98	Minimally invasive maxillofacial vertical bone augmentation using brushite based cements. Biomaterials, 2009, 30, 208-216.	11.4	61
99	Craniofacial vertical bone augmentation: A comparison between 3D printed monolithic monetite blocks and autologous onlay grafts in the rabbit. Biomaterials, 2009, 30, 6318-6326.	11.4	128
100	High-strength resorbable brushite bone cement with controlled drug-releasing capabilities. Acta Biomaterialia, 2009, 5, 43-49.	8.3	137
101	Chemical characterization of a degradable polymeric bone adhesive containing hydrolysable fillers and interpretation of anomalous mechanical properties. Acta Biomaterialia, 2009, 5, 2072-2083.	8.3	24
102	Magnesium-sputtered titanium for the formation of bioactive coatings. Acta Biomaterialia, 2009, 5, 2338-2347.	8.3	30
103	Characterization of chlorhexidine-releasing, fast-setting, brushite bone cements. Acta Biomaterialia, 2008, 4, 1081-1088.	8.3	51
104	Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions. Acta Biomaterialia, 2008, 4, 1480-1486.	8.3	71
105	The use of RANKL-coated brushite cement to stimulate bone remodelling. Biomaterials, 2008, 29, 3253-3259.	11.4	48
106	The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection. Biomaterials, 2008, 29, 3384-3392.	11.4	82
107	Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping. Journal of Materials Science: Materials in Medicine, 2008, 19, 1559-1563.	3.6	79
108	3D Powder Printing of βâ€Tricalcium Phosphate Ceramics Using Different Strategies. Advanced Engineering Materials, 2008, 10, B67.	3.5	152

#	Article	IF	CITATIONS
109	Strontium modified biocements with zero order release kinetics. Biomaterials, 2008, 29, 4691-4697.	11.4	76
110	Brushite–collagen composites for bone regeneration. Acta Biomaterialia, 2008, 4, 1315-1321.	8.3	94
111	Frozen delivery of brushite calcium phosphate cements. Acta Biomaterialia, 2008, 4, 1916-1923.	8.3	22
112	Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials, 2008, 29, 944-953.	11.4	311
113	Osteopontin functions as an opsonin and facilitates phagocytosis by macrophages of hydroxyapatite-coated microspheres: Implications for bone wound healing. Bone, 2008, 43, 708-716.	2.9	42
114	Bioactivity of bone resorptive factor loaded on osteoconductive matrices: Stability post-dehydration. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 813-818.	4.3	15
115	Synthesis, characterization and properties of erbium-based nanofibres and nanorods. Nanotechnology, 2007, 18, 445606.	2.6	13
116	Resorbable Dicalcium Phosphate Bone Substitutes Prepared by 3D Powder Printing. Advanced Functional Materials, 2007, 17, 3940-3945.	14.9	218
117	Direct Printing of Bioceramic Implants with Spatially Localized Angiogenic Factors. Advanced Materials, 2007, 19, 795-800.	21.0	132
118	Carvable calcium phosphate bone substitute material. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 83B, 1-8.	3.4	3
119	Antimicrobial properties of nanocrystalline tetracalcium phosphate cements. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 83B, 132-137.	3.4	18
120	Influence of calcium phosphate crystal assemblies on the proliferation and osteogenic gene expression of rat bone marrow stromal cells. Biomaterials, 2007, 28, 1393-1403.	11.4	119
121	Brushite Cements from Polyphosphoric Acid, Calcium Phosphate Systems. Journal of the American Ceramic Society, 2007, 90, 1892-1898.	3.8	13
122	Whisker-Reinforced Calcium Phosphate Cements. Journal of the American Ceramic Society, 2007, 90, 3694-3697.	3.8	64
123	Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. Journal of Controlled Release, 2007, 122, 173-180.	9.9	185
124	The optimisation of the initial viscosity of an encapsulated glass-ionomer restorative following different mechanical mixing regimes. Journal of Dentistry, 2006, 34, 155-163.	4.1	26
125	Effects of fibre reinforcement on the mechanical properties of brushite cement. Acta Biomaterialia, 2006, 2, 95-102.	8.3	55
126	FTIR-monitoring of a fast setting brushite bone cement: effect of intermediate phases. Journal of Materials Chemistry, 2006, 16, 3199.	6.7	70

#	Article	lF	CITATIONS
127	Biologically mediated resorption of brushite cement in vitro. Biomaterials, 2006, 27, 2178-2185.	11.4	81
128	Bone marrow cell gene expression and tissue construct assembly using octacalcium phosphate microscaffolds. Biomaterials, 2006, 27, 2874-2881.	11.4	93
129	In vitro biodegradation of three brushite calcium phosphate cements by a macrophage cell-line. Biomaterials, 2006, 27, 4557-4565.	11.4	94
130	Real-time monitoring of the setting reaction of brushite-forming cement using isothermal differential scanning calorimetry. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 79B, 360-364.	3.4	34
131	An approach to compare the quality of cancellous bone from the femoral necks of healthy and osteoporotic patients through compression testing and microcomputed tomography imaging. McGill Journal of Medicine, 2006, 9, 102-7.	0.1	4
132	Antimicrobial potency of alkali ion substituted calcium phosphate cements. Biomaterials, 2005, 26, 6880-6886.	11.4	49
133	Thermal Performance of Mechanically Activated Tetracalcium Phosphate. Journal of the American Ceramic Society, 2005, 88, 1327-1330.	3.8	10
134	Cement Formulations in the Calcium Phosphate H2O-H3PO4-H4P2O7 System. Journal of the American Ceramic Society, 2005, 88, 3096-3103.	3.8	35
135	Improving peptide-based assays to differentiate between vaccination and Mycobacterium bovis infection in cattle using nanoparticle carriers for adsorbed antigens. Journal of Controlled Release, 2005, 102, 551-561.	9.9	30
136	Rheological enhancement of mechanically activated ?-tricalcium phosphate cements. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 73B, 1-6.	3.4	56
137	Cortical bone screw fixation in ionically modified apatite cements. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 73B, 238-243.	3.4	10
138	In vitro transfer of keratinocytes: Comparison of transfer from fibrin membrane and delivery by aerosol spray. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 73B, 221-228.	3.4	33
139	Modified PMMA cements for a hydrolysis resistant metal–polymer interface in orthopaedic applications. Acta Biomaterialia, 2005, 1, 671-676.	8.3	19
140	Factors influencing calcium phosphate cement shelf-life. Biomaterials, 2005, 26, 3691-3697.	11.4	71
141	Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment. Biomaterials, 2005, 26, 6423-6429.	11.4	376
142	Comparison of bone marrow cell growth on 2D and 3D alginate hydrogels. Journal of Materials Science: Materials in Medicine, 2005, 16, 515-519.	3.6	104
143	Cement from nanocrystalline hydroxyapatite: Effect of calcium phosphate ratio. Journal of Materials Science: Materials in Medicine, 2005, 16, 1185-1190.	3.6	37
144	Alkali ion substituted calcium phosphate cement formation from mechanically activated reactants. Journal of Materials Science: Materials in Medicine, 2005, 16, 423-427.	3.6	34

#	Article	IF	CITATIONS
145	Cement from magnesium substituted hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2005, 16, 455-460.	3.6	66
146	Modification of Calcium Phosphate Cement with $\hat{I}\pm$ -Hydroxy Acids and Their Salts. Chemistry of Materials, 2005, 17, 1313-1319.	6.7	77
147	Temperature dependent setting kinetics and mechanical properties of β-TCP–pyrophosphoric acid bone cement. Journal of Materials Chemistry, 2005, 15, 4955.	6.7	56
148	Synthesis and Structure of a Calcium Polyphosphate with a Unique Criss-Cross Arrangement of Helical Phosphate Chains. Chemistry of Materials, 2005, 17, 4642-4646.	6.7	36
149	Bruschit-Knochenzemente aus biphasigen b-Tricalciumphosphat/ Calciumpyrophosphat Keramiken. BIOmaterialien: Offizielles Organ Der Deutschen Gesellschaft Fuer Biomaterialien, 2004, 5, .	0.1	0
150	Mechanical Activation of Tetracalcium Phosphate. Journal of the American Ceramic Society, 2004, 87, 311-313.	3.8	43
151	Amorphous αâ€Tricalcium Phosphate: Preparation and Aqueous Setting Reaction. Journal of the American Ceramic Society, 2004, 87, 1126-1132.	3.8	64
152	Dynamic shrinkage behavior of hydroxyapatite and glass-reinforced hydroxyapatites. Journal of Materials Science, 2004, 39, 2205-2208.	3.7	19
153	Cements from nanocrystalline hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2004, 15, 407-411.	3.6	57
154	The effect of hot pressing on the physical properties of glass reinforced hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2004, 15, 705-710.	3.6	7
155	Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials, 2004, 25, 315-325.	11.4	303
156	Surfactant vesicle-mediated delivery of DNA vaccines via the subcutaneous route. International Journal of Pharmaceutics, 2004, 284, 31-41.	5.2	42
157	Ionic modification of calcium phosphate cement viscosity. Part I: hypodermic injection and strength improvement of apatite cement. Biomaterials, 2004, 25, 2187-2195.	11.4	195
158	Ionic modification of calcium phosphate cement viscosity. Part II: hypodermic injection and strength improvement of brushite cement. Biomaterials, 2004, 25, 2197-2203.	11.4	155
159	Nanocrystalline Tetracalcium Phosphate Cement. Journal of Dental Research, 2004, 83, 425-428.	5.2	31
160	Adhesion and Growth of Bone Marrow Stromal Cells on Modified Alginate Hydrogels. Tissue Engineering, 2004, 10, 1480-1491.	4.6	3
161	Formation of translucent hydroxyapatite ceramics by sintering in carbon dioxide atmospheres. Journal of Materials Science, 2003, 38, 3979-3993.	3.7	36
162	High-Strength Apatitic Cement by Modification withα-Hydroxy Acid Salts. Advanced Materials, 2003, 15, 2091-2094.	21.0	93

#	Article	IF	CITATIONS
163	Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials, 2003, 24, 3475-3481.	11.4	315
164	Mechanical activation and cement formation of \hat{l}^2 -tricalcium phosphate. Biomaterials, 2003, 24, 4123-4131.	11.4	165
165	In vitro ageing of brushite calcium phosphate cement. Biomaterials, 2003, 24, 4133-4141.	11.4	139
166	Influence of powder/liquid mixing ratio on the performance of a restorative glass-ionomer dental cement. Biomaterials, 2003, 24, 4173-4179.	11.4	78
167	Tissue Engineering of Human Biliary Epithelial Cells on Polyglycolic Acid/Polycaprolactone Scaffolds Maintains Long-Term Phenotypic Stability. Tissue Engineering, 2003, 9, 1037-1045.	4.6	40
168	In vitro behavior of albumin-loaded carbonate hydroxyapatite gel. Journal of Biomedical Materials Research Part B, 2002, 60, 360-367.	3.1	31
169	Preparation of macroporous calcium phosphate cement tissue engineering scaffold. Biomaterials, 2002, 23, 3063-3072.	11.4	195
170	Thermal decomposition of synthesised carbonate hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2002, 13, 529-533.	3.6	98
171	Effect of sintering parameters on the density and microstructure of carbonate hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2000, 11, 719-724.	3.6	73
172	Carbonate substitution in precipitated hydroxyapatite: An investigation into the effects of reaction temperature and bicarbonate ion concentration. , 1998, 41, 79-86.		229
173	The effect of Iron chelators on bioceramic bone graft remodelling Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	0
174	Engineering mediatorless glucose oxidase microbioreactor. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	0
175	Injectable bone regeneration biomaterial with analgesic properties. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	0
176	Self-oxygenating scaffolds for anoxic culture of adipose tissue. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	1
177	Biodegradable spherical granules for bone healing of critical-size cranial defects in growing rabbits. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	0
178	Oxygen delivery augmented bone formation from transplanted bone marrow. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	0
179	Engineering the Masquelet technique. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	0