Glen C Jickling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8877074/publications.pdf

Version: 2024-02-01

131 5,730 papers citations

citations

81743

71 g-index

134 all docs 134 docs citations

134 times ranked

39

h-index

7389 citing authors

#	Article	IF	CITATIONS
1	OMICs in Stroke. , 2022, , 714-722.e2.		O
2	Cell-Free DNA in Ischemic Stroke. Stroke, 2022, 53, 1245-1246.	1.0	3
3	Cerebrovascular Reactivity Across the Entire Brain in Cerebral Amyloid Angiopathy. Neurology, 2022, 98, .	1.5	14
4	Progression of cerebral white matter hyperintensities is related to leucocyte gene expression. Brain, 2022, 145, 3179-3186.	3.7	1
5	Is stenting equivalent to endarterectomy for asymptomatic carotid stenosis?. Lancet, The, 2022, 399, 1114-1115.	6.3	O
6	How to define fast and slow progressors in any-type occlusion acute ischemic stroke. Canadian Journal of Neurological Sciences, 2022, , 1-16.	0.3	0
7	Gene Expression Changes Implicate Specific Peripheral Immune Responses to Deep and Lobar Intracerebral Hemorrhages in Humans. Brain Hemorrhages, 2022, , .	0.4	1
8	Interleukin-6 Predicts Carotid Plaque Severity, Vulnerability, and Progression. Circulation Research, 2022, 131, .	2.0	15
9	Molecular Correlates of Hemorrhage and Edema Volumes Following Human Intracerebral Hemorrhage Implicate Inflammation, Autophagy, mRNA Splicing, and T Cell Receptor Signaling. Translational Stroke Research, 2021, 12, 754-777.	2.3	24
10	Cardiac natriuretic peptides for diagnosis of covert atrial fibrillation after acute ischaemic stroke: a meta-analysis of diagnostic accuracy studies. Stroke and Vascular Neurology, 2021, 6, 128-132.	1.5	15
11	Distinct peripheral blood monocyte and neutrophil transcriptional programs following intracerebral hemorrhage and different etiologies of ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1398-1416.	2.4	27
12	Early apixaban therapy after ischemic stroke in patients with atrial fibrillation. Journal of Neurology, 2021, 268, 1837-1846.	1.8	8
13	Letter by Kamtchum-Tatuene and Jickling Regarding Article, "Elevated Lp(a) (Lipoprotein[a]) Levels Increase Risk of 30-Day Major Adverse Cardiovascular Events in Patients Following Carotid Endarterectomy― Stroke, 2021, 52, e64-e65.	1.0	2
14	Bacterial lipopolysaccharide is associated with stroke. Scientific Reports, 2021, 11, 6570.	1.6	24
15	Pre-hospital triage of suspected acute stroke patients in a mobile stroke unit in the rural Alberta. Scientific Reports, 2021, 11, 4988.	1.6	14
16	Protocol for LASER: A Randomized Evaluation and an Associated Registry of Early Anticoagulation With Edoxaban After Ischemic Stroke in Patients With Atrial Fibrillation. Frontiers in Neurology, 2021, 12, 645822.	1.1	4
17	Can Biomarkers Differentiate Between Ischemic and Hemorrhagic Stroke in the Prehospital Setting?. Neurology, 2021, 96, 689-690.	1.5	2
18	Aging Immune System in Acute Ischemic Stroke. Stroke, 2021, 52, 1355-1361.	1.0	9

#	Article	IF	Citations
19	Hemorrhagic Transformation in Ischemic Stroke and the Role of Inflammation. Frontiers in Neurology, 2021, 12, 661955.	1.1	78
20	Glibenclamide does not improve outcome following severe collagenase-induced intracerebral hemorrhage in rats. PLoS ONE, 2021, 16, e0252584.	1.1	12
21	Effect of Implantable vs Prolonged External Electrocardiographic Monitoring on Atrial Fibrillation Detection in Patients With Ischemic Stroke. JAMA - Journal of the American Medical Association, 2021, 325, 2160.	3.8	95
22	White matter hyperintensities in patients with Parkinson's disease: A systematic review and meta-analysis. Journal of the Neurological Sciences, 2021, 426, 117481.	0.3	19
23	Non-stenotic Carotid Plaques in Embolic Stroke of Unknown Source. Frontiers in Neurology, 2021, 12, 719329.	1.1	20
24	Mesenchymal Stem Cells for Ischemic Stroke. Neurology, 2021, 96, 301-302.	1.5	3
25	Association of CT-Based Hypoperfusion Index With Ischemic Core Enlargement in Patients With Medium and Large Vessel Stroke. Neurology, 2021, 97, 10.1212/WNL.000000000012855.	1.5	5
26	Assessment of Discrepancies Between Follow-up Infarct Volume and 90-Day Outcomes Among Patients With Ischemic Stroke Who Received Endovascular Therapy. JAMA Network Open, 2021, 4, e2132376.	2.8	17
27	Immune Modulation as a Key Mechanism for the Protective Effects of Remote Ischemic Conditioning After Stroke. Frontiers in Neurology, 2021, 12, 746486.	1.1	8
28	MicroRNA and their target mRNAs change expression in whole blood of patients after intracerebral hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 775-786.	2.4	38
29	mRNA Expression Profiles from Whole Blood Associated with Vasospasm in Patients with Subarachnoid Hemorrhage. Neurocritical Care, 2020, 33, 82-89.	1.2	5
30	Cardioembolic Ischemic Stroke Gene Expression Fingerprint in Blood: a Systematic Review and Verification Analysis. Translational Stroke Research, 2020, 11, 326-336.	2.3	14
31	Carotid Plaque With High-Risk Features in Embolic Stroke of Undetermined Source. Stroke, 2020, 51, 311-314.	1.0	59
32	RNA expression studies in stroke: what can they tell us about stroke mechanism?. Current Opinion in Neurology, 2020, 33, 24-29.	1.8	21
33	Successful dabigatran reversal after subdural hemorrhage using idarucizumab in a mobile stroke unit. Medicine (United States), 2020, 99, e20200.	0.4	6
34	Alternative Splicing of Putative Stroke/Vascular Risk Factor Genes Expressed in Blood Following Ischemic Stroke Is Sexually Dimorphic and Cause-Specific. Frontiers in Neurology, 2020, 11, 584695.	1.1	8
35	Prevalence of High-risk Plaques and Risk of Stroke in Patients With Asymptomatic Carotid Stenosis. JAMA Neurology, 2020, 77, 1524.	4.5	81
36	Genetic variation contributes to gene expression response in ischemic stroke: an eQTL study. Annals of Clinical and Translational Neurology, 2020, 7, 1648-1660.	1.7	11

#	Article	IF	CITATIONS
37	Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): a multicentre, double-blind, randomised controlled trial. Lancet, The, 2020, 395, 878-887.	6.3	400
38	Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nature Reviews Neurology, 2020, 16, 247-264.	4.9	167
39	Genetics of chronic kidney disease and stroke. Neurology, 2020, 94, 1060-1061.	1.5	0
40	Abstract 69: Trans-eQTL Analysis of Blood After Ischemic Stroke Reveals X-Linked SNP-Gene Relationships. Stroke, 2020, 51, .	1.0	1
41	Neutrophil count is related to stroke outcome following endovascular therapy. Neurology, 2019, 93, 194-195.	1.5	4
42	Smoking affects gene expression in blood of patients with ischemic stroke. Annals of Clinical and Translational Neurology, 2019, 6, 1748-1756.	1.7	6
43	Cancer-Related Ischemic Stroke Has a Distinct Blood mRNA Expression Profile. Stroke, 2019, 50, 3259-3264.	1.0	10
44	Blood Biomarkers for Stroke Diagnosis and Management. NeuroMolecular Medicine, 2019, 21, 344-368.	1.8	83
45	Inflammatory, regulatory, and autophagy co-expression modules and hub genes underlie the peripheral immune response to human intracerebral hemorrhage. Journal of Neuroinflammation, 2019, 16, 56.	3.1	51
46	A SNP-it of stroke outcome. Neurology, 2019, 92, 549-550.	1.5	2
46	A SNP-it of stroke outcome. Neurology, 2019, 92, 549-550. Predicting stroke outcome. Neurology, 2019, 92, 157-158.	1.5 1.5	7
47	Predicting stroke outcome. Neurology, 2019, 92, 157-158. HDAC9 Polymorphism Alters Blood Gene Expression in Patients with Large Vessel Atherosclerotic	1.5	7
47	Predicting stroke outcome. Neurology, 2019, 92, 157-158. HDAC9 Polymorphism Alters Blood Gene Expression in Patients with Large Vessel Atherosclerotic Stroke. Translational Stroke Research, 2019, 10, 19-25. The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes. Journal of Cerebral Blood Flow and Metabolism,	1.5 2.3	7 23
47 48 49	Predicting stroke outcome. Neurology, 2019, 92, 157-158. HDAC9 Polymorphism Alters Blood Gene Expression in Patients with Large Vessel Atherosclerotic Stroke. Translational Stroke Research, 2019, 10, 19-25. The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1818-1835.	1.5 2.3 2.4	7 23 45
47 48 49 50	Predicting stroke outcome. Neurology, 2019, 92, 157-158. HDAC9 Polymorphism Alters Blood Gene Expression in Patients with Large Vessel Atherosclerotic Stroke. Translational Stroke Research, 2019, 10, 19-25. The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1818-1835. Finding fibrillin in cerebral artery dissection. Neurology, 2018, 90, 399-400. Mobile stroke unit triage of patients with a suspected stroke: a novel solution to reducing suspected	1.5 2.3 2.4 1.5	7 23 45 2
47 48 49 50	Predicting stroke outcome. Neurology, 2019, 92, 157-158. HDAC9 Polymorphism Alters Blood Gene Expression in Patients with Large Vessel Atherosclerotic Stroke. Translational Stroke Research, 2019, 10, 19-25. The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1818-1835. Finding fibrillin in cerebral artery dissection. Neurology, 2018, 90, 399-400. Mobile stroke unit triage of patients with a suspected stroke: a novel solution to reducing suspected stroke admissions in busy emergency departments. BMJ Innovations, 2018, 4, 54-59. MicroRNA-based therapeutics in central nervous system injuries. Journal of Cerebral Blood Flow and	1.5 2.3 2.4 1.5	7 23 45 2

#	Article	IF	Citations
55	Clinical Reasoning: A case of altered mental status, not otherwise specified. Neurology, 2017, 89, e154-e158.	1.5	2
56	Inhibition of Src family kinases improves cognitive function after intraventricular hemorrhage or intraventricular thrombin. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2359-2367.	2.4	25
57	Abstract TP81: MiR122 Modulates Nos2 to Improve Stroke Outcomes After Middle Cerebral Artery Occlusion in Rats. Stroke, 2017, 48, .	1.0	O
58	Altered Expression of Long Noncoding RNAs in Blood After Ischemic Stroke and Proximity to Putative Stroke Risk Loci. Stroke, 2016, 47, 2896-2903.	1.0	131
59	Leukocyte response is regulated by microRNA let7i in patients with acute ischemic stroke. Neurology, 2016, 87, 2198-2205.	1.5	40
60	Elevating microRNA-122 in blood improves outcomes after temporary middle cerebral artery occlusion in rats. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1374-1383.	2.4	73
61	Roles of Neutrophils in Stroke. Springer Series in Translational Stroke Research, 2016, , 273-301.	0.1	0
62	Myelin Basic Protein Associates with A \hat{l}^2 PP, A \hat{l}^2 1-42, and Amyloid Plaques in Cortex of Alzheimer's Disease Brain. Journal of Alzheimer's Disease, 2015, 44, 1213-1229.	1.2	67
63	Inflammation Combined with Ischemia Produces Myelin Injury and Plaque-Like Aggregates of Myelin, Amyloid-β and AβPP in Adult Rat Brain. Journal of Alzheimer's Disease, 2015, 46, 507-523.	1.2	36
64	MicroRNA and mRNA Expression Changes in Steroid Na \tilde{A} -ve and Steroid Treated DMD Patients. Journal of Neuromuscular Diseases, 2015, 2, 387-396.	1.1	10
65	Intracerebral Hemorrhage and Ischemic Stroke of Different Etiologies Have Distinct Alternatively Spliced mRNA Profiles in the Blood: a Pilot RNA-seq Study. Translational Stroke Research, 2015, 6, 284-289.	2.3	49
66	Lysophosphatidylcholine to stratify risk of ischemic stroke in TIA. Neurology, 2015, 84, 17-18.	1.5	6
67	Biomarker Panels in Ischemic Stroke. Stroke, 2015, 46, 915-920.	1.0	105
68	Targeting Neutrophils in Ischemic Stroke: Translational Insights from Experimental Studies. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 888-901.	2.4	405
69	Comment: TIA response to antiplatelets stratified by glycated albumin. Neurology, 2015, 84, 1334-1334.	1.5	2
70	Improving the translation of animal ischemic stroke studies to humans. Metabolic Brain Disease, 2015, 30, 461-467.	1.4	49
71	Abstract W P93: MiR-122 Improves Stroke Outcomes after Middle Cerebral Artery Occlusion in Rats. Stroke, 2015, 46, .	1.0	1
72	microRNA Expression in Peripheral Blood Cells following Acute Ischemic Stroke and Their Predicted Gene Targets. PLoS ONE, 2014, 9, e99283.	1.1	165

#	Article	IF	CITATIONS
73	Gene Expression in Peripheral Immune Cells following Cardioembolic Stroke Is Sexually Dimorphic. PLoS ONE, 2014, 9, e102550.	1.1	84
74	Modeling Immunity and Inflammation in Stroke. Stroke, 2014, 45, e179-80.	1.0	20
75	Free fatty acids to predict recurrent ischemic stroke. Neurology, 2014, 82, 1110-1111.	1.5	5
76	Carotid plaque inflammation in stroke assessed by PET. Neurology, 2014, 82, 1672-1673.	1.5	4
77	Rating total cerebral small-vessel disease. Neurology, 2014, 83, 1224-1225.	1.5	9
78	Distinctive RNA Expression Profiles in Blood Associated With Alzheimer Disease After Accounting for White Matter Hyperintensities. Alzheimer Disease and Associated Disorders, 2014, 28, 226-233.	0.6	43
79	Inhibition of Src Family Kinases Protects Hippocampal Neurons and Improves Cognitive Function after Traumatic Brain Injury. Journal of Neurotrauma, 2014, 31, 1268-1276.	1.7	28
80	Hemorrhagic Transformation after Ischemic Stroke in Animals and Humans. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 185-199.	2.4	423
81	Research Highlights: Highlights from the latest articles in biomarkers in medicine. Biomarkers in Medicine, 2014, 8, 383-385.	0.6	O
82	Myelin Injury and Degraded Myelin Vesicles in Alzheimer's Disease. Current Alzheimer Research, 2014, 11, 232-238.	0.7	60
83	Blood Genomics After Brain Ischemia, Hemorrhage, and Trauma. , 2014, , 445-457.		0
84	Inflammatory Biomarkers in Patients with Acute Brain Injuries. , 2014, , 211-234.		0
85	Abstract T P234: Cell Cycle Inhibition via Blocking Src Family Kinases Promotes Hippocampal Neuron Survival and Improves Cognitive Function after Intraventricular Hemorrhage. Stroke, 2014, 45, .	1.0	0
86	Ischemic stroke biomarkers in blood. Biomarkers in Medicine, 2013, 7, 37-47.	0.6	57
87	Whole Genome Expression of Cellular Response to Stroke. Stroke, 2013, 44, S23-5.	1.0	17
88	Genome wide differences of gene expression associated with HLA-DRB1 genotype in multiple sclerosis: A pilot study. Journal of Neuroimmunology, 2013, 257, 90-96.	1.1	5
89	Predicting stroke mortality. Neurology, 2013, 81, 1970-1971.	1.5	4
90	RNA in blood is altered prior to hemorrhagic transformation in ischemic stroke. Annals of Neurology, 2013, 74, 232-240.	2.8	47

#	Article	IF	CITATIONS
91	Effects of Gender on Gene Expression in the Blood of Ischemic Stroke Patients. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 780-791.	2.4	64
92	Ischemic Transient Neurological Events Identified by Immune Response to Cerebral Ischemia. Stroke, 2012, 43, 1006-1012.	1.0	38
93	Breaking down barriers to identify hemorrhagic transformation in ischemic stroke. Neurology, 2012, 79, 1632-1633.	1.5	18
94	The X-Chromosome Has a Different Pattern of Gene Expression in Women Compared With Men With Ischemic Stroke. Stroke, 2012, 43, 326-334.	1.0	48
95	Catecholamine-related gene expression in blood correlates with tic severity in tourette syndrome. Psychiatry Research, 2012, 200, 593-601.	1.7	29
96	Integrated analysis of mRNA and microRNA expression in mature neurons, neural progenitor cells and neuroblastoma cells. Gene, 2012, 495, 120-127.	1.0	55
97	Prediction of Cardioembolic, Arterial, and Lacunar Causes of Cryptogenic Stroke by Gene Expression and Infarct Location. Stroke, 2012, 43, 2036-2041.	1.0	77
98	Correlations of gene expression with ratings of inattention and hyperactivity/impulsivity in tourette syndrome: a pilot study. BMC Medical Genomics, 2012, 5, 49.	0.7	10
99	Y Chromosome Gene Expression in the Blood of Male Patients With Ischemic Stroke Compared With Male Controls. Gender Medicine, 2012, 9, 68-75.e3.	1.4	25
100	Blood Biomarkers in Stroke: Research and Clinical Practice. International Journal of Stroke, 2012, 7, 435-439.	2.9	39
101	Abstract 2357: Src Kinase Inhibition Blocks Thrombin-induced Brain Injuries without Cognitive Side Effects. Stroke, 2012, 43, .	1.0	0
102	Molecular markers and mechanisms of stroke: RNA studies of blood in animals and humans. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1513-1531.	2.4	71
103	Differences in exon expression and alternatively spliced genes in blood of multiple sclerosis compared to healthy control subjects. Journal of Neuroimmunology, 2011, 230, 124-129.	1.1	19
104	GABA- and acetylcholine-related gene expression in blood correlate with tic severity and microarray evidence for alternative splicing in Tourette syndrome: A pilot study. Brain Research, 2011, 1381, 228-236.	1.1	47
105	Correlations of Gene Expression with Blood Lead Levels in Children with Autism Compared to Typically Developing Controls. Neurotoxicity Research, 2011, 19, 1-13.	1.3	60
106	Are Underlying Assumptions of Current Animal Models of Human Stroke Correct: from STAIRs to High Hurdles?. Translational Stroke Research, 2011, 2, 138-143.	2.3	41
107	Gene Expression Profiling of Blood in Brain Arteriovenous Malformation Patients. Translational Stroke Research, 2011, 2, 575-587.	2.3	31
108	Blood Biomarkers of Ischemic Stroke. Neurotherapeutics, 2011, 8, 349-360.	2.1	163

#	Article	IF	CITATIONS
109	Exon expression and alternatively spliced genes in tourette syndrome. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 72-78.	1.1	30
110	Profiles of lacunar and nonlacunar stroke. Annals of Neurology, 2011, 70, 477-485.	2.8	59
111	Transient ischemic attacks characterized by RNA profiles in blood. Neurology, 2011, 77, 1718-1724.	1.5	34
112	RNA Expression Profiles From Blood for the Diagnosis of Stroke and Its Causes. Journal of Child Neurology, 2011, 26, 1131-1136.	0.7	9
113	Genome response to tissue plasminogen activator in experimental ischemic stroke. BMC Genomics, 2010, 11, 254.	1.2	17
114	Signatures of cardioembolic and largeâ€vessel ischemic stroke. Annals of Neurology, 2010, 68, 681-692.	2.8	114
115	Brain and Blood microRNA Expression Profiling of Ischemic Stroke, Intracerebral Hemorrhage, and Kainate Seizures. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 92-101.	2.4	458
116	Brief Focal Cerebral Ischemia That Simulates Transient Ischemic Attacks in Humans Regulates Gene Expression in Rat Peripheral Blood. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 110-118.	2.4	33
117	Gene Expression Profiling of Blood for the Prediction of Ischemic Stroke. Stroke, 2010, 41, 2171-2177.	1.0	126
118	Distinctive RNA Expression Profiles in Blood Associated With White Matter Hyperintensities in Brain. Stroke, 2010, 41, 2744-2749.	1.0	54
119	Biomarkers for Stroke Subgroups in Blood. Journal of Molecular Biomarkers & Diagnosis, 2010, 01, .	0.4	0
120	Circulating Endothelial Progenitor Cells and Age-Related White Matter Changes. Stroke, 2009, 40, 3191-3196.	1.0	37
121	Gene expression in blood of subjects with Duchenne muscular dystrophy. Neurogenetics, 2009, 10, 117-125.	0.7	11
122	Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood. BMC Medical Genomics, 2009, 2, 49.	0.7	94
123	Excellent response to thrombolysis following prolonged basilar artery occlusion with extensive ischemic changes on MRI. Clinical Neurology and Neurosurgery, 2009, 111, 789-790.	0.6	0
124	Acetaminophen toxicity withÂconcomitant use ofÂcarbamazepine. Epileptic Disorders, 2009, 11, 329-332.	0.7	13
125	Left vertebral artery dissection causing bilateral internuclear ophthalmoplegia. Canadian Journal of Emergency Medicine, 2008, 10, 485-487.	0.5	0
126	The Light-induced Reactions of Tryptophan with Halocompounds¶. Photochemistry and Photobiology, 2007, 75, 362-368.	1.3	8

GLEN C JICKLING

#	Article	IF	CITATIONS
127	Intravenous rt-PA for acute stroke: comparing its effectiveness in younger and older patients. Journal of Neurology, Neurosurgery and Psychiatry, 2005, 76, 1234-1237.	0.9	49
128	Can rt-PA be Administered to the Wrong Patient? Two Patients with Somatoform Disorder. Canadian Journal of Neurological Sciences, 2004, 31, 99-101.	0.3	15
129	Examination of EmrE conformational differences in various membrane mimetic environments. Biochemistry and Cell Biology, 2003, 81, 61-70.	0.9	18
130	The Light-induced Reactions of Tryptophan with Halocompounds $\hat{A}\P$. Photochemistry and Photobiology, 2002, 75, 362.	1.3	36
131	Escherichia coli TehB RequiresS-Adenosylmethionine as a Cofactor To Mediate Tellurite Resistance. Journal of Bacteriology, 2000, 182, 6509-6513.	1.0	43