Xuesi Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8877004/xuesi-chen-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

785	38,295	100	147
papers	citations	h-index	g-index
820	43,790 ext. citations	7.7	7.73
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
7 ⁸ 5	Cationic amphiphilic dendrons with effective antibacterial performance <i>Journal of Materials Chemistry B</i> , 2022 ,	7:3	1
784	Opportunities and Challenges for mRNA Delivery Nanoplatforms <i>Journal of Physical Chemistry Letters</i> , 2022 , 13, 1314-1322	6.4	3
783	Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect <i>Advanced Drug Delivery Reviews</i> , 2022 , 114138	18.5	1
782	Bioactive Materials Promote Wound Healing through Modulation of Cell Behaviors <i>Advanced Science</i> , 2022 , e2105152	13.6	8
781	Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions <i>Bioactive Materials</i> , 2022 , 11, 317-338	16.7	13
780	A Minimalist Binary Vaccine Carrier for Personalized Postoperative Cancer Vaccine Therapy <i>Advanced Materials</i> , 2022 , e2109254	24	10
779	Polymer nanotherapeutics to correct autoimmunity Journal of Controlled Release, 2022,	11.7	6
778	Biofunctionalized composite scaffold to potentiate osteoconduction, angiogenesis, and favorable metabolic microenvironment for osteonecrosis therapy. <i>Bioactive Materials</i> , 2022 , 9, 446-460	16.7	12
777	Combining mannose receptor mediated nanovaccines and gene regulated PD-L1 blockade for boosting cancer immunotherapy. <i>Bioactive Materials</i> , 2022 , 7, 167-180	16.7	7
776	Aldehyde end-capped CO2-based polycarbonates: a green synthetic platform for site-specific functionalization. <i>Polymer Chemistry</i> , 2022 , 13, 1731-1738	4.9	0
775	3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects <i>Advanced Science</i> , 2022 , e2103875	13.6	9
774	Metformin booster adipocyte-targeted gene therapy for the treatment of obesity and related metabolic syndromes. <i>Science China Chemistry</i> , 2022 , 65, 796-809	7.9	1
773	Compatibility and Thermal and Structural Properties of Poly(l-lactide)/Poly(l-co-d-lactide) Blends. <i>Macromolecules</i> , 2022 , 55, 1709-1718	5.5	4
77²	Self-Switchable Polymerization: A Smart Approach to Sequence-Controlled Degradable Copolymers. <i>Macromolecules</i> , 2022 , 55, 1879-1893	5.5	7
771	Versatile Polymer-Initiating Biomineralization for Tumor Blockade Therapy <i>Advanced Materials</i> , 2022 , e2110094	24	7
770	Mannan-decorated pathogen-like polymeric nanoparticles as nanovaccine carriers for eliciting superior anticancer immunity <i>Biomaterials</i> , 2022 , 284, 121489	15.6	3
769	Recent advances in organic and polymeric carriers for local tumor chemo-immunotherapy. <i>Science China Technological Sciences</i> , 2022 , 65, 1011	3.5	1

768	Molecular Strings Modified Gene Delivery System. <i>Biomaterial Engineering</i> , 2022 , 1-37	0.3	
767	Charge/Size Dual-Rebound Gene Delivery System. <i>Biomaterial Engineering</i> , 2022 , 39-59	0.3	
766	Biomedical polymers: synthesis, properties, and applications Science China Chemistry, 2022, 1-66	7.9	11
765	Versatile Polymer-Initiating Biomineralization for Tumor Blockade Therapy (Adv. Mater. 19/2022). <i>Advanced Materials</i> , 2022 , 34, 2270146	24	
764	Macromolecular Effects in Medicinal Chemistry?. Acta Chimica Sinica, 2022, 80, 563	3.3	О
763	Smart transformable nanoparticles for enhanced tumor theranostics. <i>Applied Physics Reviews</i> , 2021 , 8, 041321	17.3	22
762	Molecular Strings Modified Gene Delivery System. <i>Biomaterial Engineering</i> , 2021 , 1-37	0.3	
761	Immunologically Effective Biomaterials. ACS Applied Materials & amp; Interfaces, 2021, 13, 56719-56724	9.5	11
760	Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo. <i>Nature Communications</i> , 2021 , 12, 6742	17.4	6
759	Charge/Size Dual-Rebound Gene Delivery System. <i>Biomaterial Engineering</i> , 2021 , 1-21	0.3	
758	Self-Amplifying Nanotherapeutic Drugs Homing to Tumors in a Manner of Chain Reaction. <i>Advanced Materials</i> , 2021 , 33, e2002094	24	9
757	Cystine proportion regulates fate of polypeptide nanogel as nanocarrier for chemotherapeutics. <i>Science China Chemistry</i> , 2021 , 64, 293-301	7.9	25
756	Cationic Flexible Organic Framework for Combination of Photodynamic Therapy and Genetic Immunotherapy Against Tumors. <i>Small</i> , 2021 , 17, e2008125	11	3
755	A Multichannel Ca Nanomodulator for Multilevel Mitochondrial Destruction-Mediated Cancer Therapy. <i>Advanced Materials</i> , 2021 , 33, e2007426	24	54
754	A Cationic Metal-Organic Framework to Scavenge Cell-Free DNA for Severe Sepsis Management. <i>Nano Letters</i> , 2021 , 21, 2461-2469	11.5	12
753	Monomer Controlled Switchable Copolymerization: A Feasible Route for the Functionalization of Poly(lactide). <i>Angewandte Chemie</i> , 2021 , 133, 9360-9364	3.6	Ο
75 ²	Prodrug-Based Versatile Nanomedicine with Simultaneous Physical and Physiological Tumor Penetration for Enhanced Cancer Chemo-Immunotherapy. <i>Nano Letters</i> , 2021 , 21, 3721-3730	11.5	9
751	Injectable Hydrogels as Local Depots at Tumor Sites for Antitumor Immunotherapy and Immune-Based Combination Therapy. <i>Macromolecular Bioscience</i> , 2021 , 21, e2100039	5.5	15

75°	X-ray-responsive polypeptide nanogel for concurrent chemoradiotherapy. <i>Journal of Controlled Release</i> , 2021 , 332, 1-9	11.7	23
749	Design of an Injectable Polypeptide Hydrogel Depot Containing the Immune Checkpoint Blocker Anti-PD-L1 and Doxorubicin to Enhance Antitumor Combination Therapy. <i>Macromolecular Bioscience</i> , 2021 , 21, e2100049	5.5	8
748	Polypeptides-Drug Conjugates for Anticancer Therapy. Advanced Healthcare Materials, 2021, 10, e2001	9 74 .1	6
747	Matrix metalloproteinase-sensitive poly(ethylene glycol)/peptide hydrogels as an interactive platform conducive to cell proliferation during 3D cell culture. <i>Science China Technological Sciences</i> , 2021 , 64, 1285-1294	3.5	5
746	Covalent organic framework nanoparticles for anti-tumor gene therapy. <i>Science China Chemistry</i> , 2021 , 64, 1235-1241	7.9	9
745	Chronic Diabetic Wound Treatment: Green Tea Derivative Driven Smart Hydrogels with Desired Functions for Chronic Diabetic Wound Treatment (Adv. Funct. Mater. 18/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170127	15.6	2
744	Nanoparticles Composed of PEGylated Alternating Copolymer-Combretastatin A4 Conjugate for Cancer Therapy. <i>Macromolecular Bioscience</i> , 2021 , 21, e2100077	5.5	2
743	Targeting dual gene delivery nanoparticles overcomes immune checkpoint blockade induced adaptive resistance and regulates tumor microenvironment for improved tumor immunotherapy. Nano Today, 2021, 38, 101194	17.9	8
742	Localized Chemotherapy Based on Injectable Hydrogel Boosts the Antitumor Activity of Adoptively Transferred T Lymphocytes In Vivo. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100814	10.1	3
741	Rapidly Thermoreversible and Biodegradable Polypeptide Hydrogels with Sol-Gel-Sol Transition Dependent on Subtle Manipulation of Side Groups. <i>Biomacromolecules</i> , 2021 , 22, 3522-3533	6.9	3
740	A fast and versatile cross-linking strategy via -phthalaldehyde condensation for mechanically strengthened and functional hydrogels. <i>National Science Review</i> , 2021 , 8, nwaa128	10.8	14
739	Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy. <i>Science Bulletin</i> , 2021 , 66, 362-373	10.6	31
738	A trinuclear salen-Al complex for copolymerization of epoxides and anhydride: mechanistic insight into a cocatalyst-free system. <i>Chemical Communications</i> , 2021 , 57, 133-136	5.8	5
737	Determination of residual monomers in poly(lactide-co-Eaprolactone) using gas chromatography. <i>Polymer Testing</i> , 2021 , 93, 106998	4.5	
736	Biopolymer Immune Implants' Sequential Activation of Innate and Adaptive Immunity for Colorectal Cancer Postoperative Immunotherapy. <i>Advanced Materials</i> , 2021 , 33, e2004559	24	19
735	In situ activation of STING pathway with polymeric SN38 for cancer chemoimmunotherapy. <i>Biomaterials</i> , 2021 , 268, 120542	15.6	18
734	Effective Eradication of Tumors by Enhancing Photoacoustic-Imaging-Guided Combined Photothermal Therapy and Ultrasonic Therapy. <i>Advanced Functional Materials</i> , 2021 , 31, 2009314	15.6	8
733	Enhancers in polymeric nonviral gene delivery systems. <i>View</i> , 2021 , 2, 20200072	7.8	2

(2021-2021)

732	Enhanced anti-PD-1 therapy in hepatocellular carcinoma by tumor vascular disruption and normalization dependent on combretastatin A4 nanoparticles and DC101. <i>Theranostics</i> , 2021 , 11, 5955-	5969	4
731	Supramolecular Assembled Programmable Nanomedicine As In Situ Cancer Vaccine for Cancer Immunotherapy. <i>Advanced Materials</i> , 2021 , 33, e2007293	24	41
730	Influence of residual chirality on the conformation and enzymatic degradation of glycopolypeptide based biomaterials. <i>Science China Technological Sciences</i> , 2021 , 64, 641-650	3.5	3
729	Stimuli-responsive polypeptides for controlled drug delivery. Chemical Communications, 2021, 57, 9489-	95 © 3	12
728	Cisplatin nanoparticles boost abscopal effect of radiation plus anti-PD1 therapy. <i>Biomaterials Science</i> , 2021 , 9, 3019-3027	7.4	2
727	Engineered nanomedicines for tumor vasculature blockade therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1691	9.2	5
726	Physiologically relevant pH- and temperature-responsive polypeptide hydrogels with adhesive properties. <i>Polymer Chemistry</i> , 2021 , 12, 2832-2839	4.9	4
725	A simple and general strategy for postsurgical personalized cancer vaccine therapy based on an injectable dynamic covalent hydrogel. <i>Biomaterials Science</i> , 2021 , 9, 6879-6888	7.4	4
724	Ultrasound-Augmented Mitochondrial Calcium Ion Overload by Calcium Nanomodulator to Induce Immunogenic Cell Death. <i>Nano Letters</i> , 2021 , 21, 2088-2093	11.5	58
723	Green Tea Derivative Driven Smart Hydrogels with Desired Functions for Chronic Diabetic Wound Treatment. <i>Advanced Functional Materials</i> , 2021 , 31, 2009442	15.6	67
722	Monomer Controlled Switchable Copolymerization: A Feasible Route for the Functionalization of Poly(lactide). <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 9274-9278	16.4	8
721	Injectable Self-Healing Hydrogel Wound Dressing with Cysteine-Specific On-Demand Dissolution Property Based on Tandem Dynamic Covalent Bonds. <i>Advanced Functional Materials</i> , 2021 , 31, 2011230	15.6	31
720	A pH-Triggered Self-Unpacking Capsule Containing Zwitterionic Hydrogel-Coated MOF Nanoparticles for Efficient Oral Exendin-4 Delivery. <i>Advanced Materials</i> , 2021 , 33, e2102044	24	12
719	Cisplatin nanoparticles possess stronger anti-tumor synergy with PD1/PD-L1 inhibitors than the parental drug. <i>Acta Biomaterialia</i> , 2021 , 135, 543-555	10.8	2
718	High Antibacterial Activity and Selectivity of the Versatile Polysulfoniums that Combat Drug Resistance. <i>Advanced Materials</i> , 2021 , 33, e2104402	24	24
717	In-Situ-Sprayed Dual-Functional Immunotherapeutic Gel for Colorectal Cancer Postsurgical Treatment. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100862	10.1	4
716	Manipulating Liver Bile Acid Signaling by Nanodelivery of Bile Acid Receptor Modulators for Liver Cancer Immunotherapy. <i>Nano Letters</i> , 2021 , 21, 6781-6791	11.5	O
715	Crucial Impact of Residue Chirality on the Gelation Process and Biodegradability of Thermoresponsive Polypeptide Hydrogels. <i>Biomacromolecules</i> , 2021 , 22, 3992-4003	6.9	4

714	Precise regulation of inflammation and immunosuppressive microenvironment for amplified photothermal/immunotherapy against tumour recurrence and metastasis. <i>Nano Today</i> , 2021 , 40, 10126	6 ^{17.9}	9
713	Highly Effective Crosslinker for Redox-Sensitive Gene Carriers. <i>Advances in Polymer Technology</i> , 2021 , 2021, 1-9	1.9	O
712	Biocompatible in situ-forming glycopolypeptide hydrogels. <i>Science China Technological Sciences</i> , 2020 , 63, 992-1004	3.5	4
711	Functional Polymer-Based Nerve Guide Conduits to Promote Peripheral Nerve Regeneration. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000225	4.6	22
710	Treatment of severe sepsis with nanoparticulate cell-free DNA scavengers. <i>Science Advances</i> , 2020 , 6, eaay7148	14.3	36
709	Bioactive polypeptide hydrogels modified with RGD and N-cadherin mimetic peptide promote chondrogenic differentiation of bone marrow mesenchymal stem cells. <i>Science China Chemistry</i> , 2020 , 63, 1100-1111	7.9	15
708	Supramolecular Self-Assembled Nanostructures for Cancer Immunotherapy. <i>Frontiers in Chemistry</i> , 2020 , 8, 380	5	13
707	Predicting the Loading Capability of mPEG-PDLLA to Hydrophobic Drugs Using Solubility Parameters <i>Chinese Journal of Chemistry</i> , 2020 , 38, 690-696	4.9	4
706	Thermosensitive Polypeptide Hydrogels Co-Loaded with Two Anti-Tumor Agents to Reduce Multi-Drug Resistance and Enhance Local Tumor Treatment. <i>Advanced Therapeutics</i> , 2020 , 3, 1900165	4.9	5
705	Nanotherapeutics for Immuno-Oncology: A Crossroad for New Paradigms. <i>Trends in Cancer</i> , 2020 , 6, 288	8-129 5	20
704	Rationally Designed Polymer Conjugate for Tumor-Specific Amplification of Oxidative Stress and Boosting Antitumor Immunity. <i>Nano Letters</i> , 2020 , 20, 2514-2521	11.5	75
703	Helix Self-Assembly Behavior of Amino Acid-Modified Camptothecin Prodrugs and Its Antitumor Effect. ACS Applied Materials & Interfaces, 2020, 12, 7466-7476	9.5	12
702	Hypoxia-sensitive supramolecular nanogels for the cytosolic delivery of ribonuclease A as a breast cancer therapeutic. <i>Journal of Controlled Release</i> , 2020 , 320, 83-95	11.7	33
701	A Nanocomposite Vehicle Based on Metal-Organic Framework Nanoparticle Incorporated		2.4
<i>,</i> -	Biodegradable Microspheres for Enhanced Oral Insulin Delivery. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 22581-22592	9.5	24
700		9.5	13
	Interfaces, 2020, 12, 22581-22592 Poly(l-glutamic acid)-Based Zwitterionic Polymer in a Charge Conversional Shielding System for		
700	Interfaces, 2020, 12, 22581-22592 Poly(l-glutamic acid)-Based Zwitterionic Polymer in a Charge Conversional Shielding System for Gene Therapy of Malignant Tumors. ACS Applied Materials & Camp; Interfaces, 2020, 12, 19295-19306 Injectable Click Polypeptide Hydrogels via Tetrazine-Norbornene Chemistry for Localized Cisplatin	9.5	13

(2019-2020)

696	Synergistically Enhanced Mucoadhesive and Penetrable Polypeptide Nanogel for Efficient Drug Delivery to Orthotopic Bladder Cancer. <i>Research</i> , 2020 , 2020, 8970135	7.8	16
695	Synergistic tumor immunological strategy by combining tumor nanovaccine with gene-mediated extracellular matrix scavenger. <i>Biomaterials</i> , 2020 , 252, 120114	15.6	29
694	Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation. <i>Biomaterials</i> , 2020 , 230, 119617	15.6	100
693	Breaking the Si/Al Limit of Nanosized 짣eolites: Promoting Catalytic Production of Lactide. <i>Chemistry of Materials</i> , 2020 , 32, 751-758	9.6	15
692	Neutralizing tumor-promoting inflammation with polypeptide-dexamethasone conjugate for microenvironment modulation and colorectal cancer therapy. <i>Biomaterials</i> , 2020 , 232, 119676	15.6	34
691	An immune cocktail therapy to realize multiple boosting of the cancer-immunity cycle by combination of drug/gene delivery nanoparticles. <i>Science Advances</i> , 2020 , 6,	14.3	32
690	Nanozyme-mediated cascade reaction based on metal-organic framework for synergetic chemo-photodynamic tumor therapy. <i>Journal of Controlled Release</i> , 2020 , 328, 631-639	11.7	21
689	A Multistage Cooperative Nanoplatform Enables Intracellular Co-Delivery of Proteins and Chemotherapeutics for Cancer Therapy. <i>Advanced Materials</i> , 2020 , 32, e2000013	24	48
688	Hierarchical supramolecular assembly of a single peptoid polymer into a planar nanobrush with two distinct molecular packing motifs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 31639-31647	11.5	10
687	Antineoplastic Drug-Free Anticancer Strategy Enabled by Host-Defense-Peptides-Mimicking Synthetic Polypeptides. <i>Advanced Materials</i> , 2020 , 32, e2001108	24	28
686	Spatiotemporally Targeted Nanomedicine Overcomes Hypoxia-Induced Drug Resistance of Tumor Cells after Disrupting Neovasculature. <i>Nano Letters</i> , 2020 , 20, 6191-6198	11.5	51
685	FXIIIa substrate peptide decorated BLZ945 nanoparticles for specifically remodeling tumor immunity. <i>Biomaterials Science</i> , 2020 , 8, 5666-5676	7.4	5
684	Biomaterials: Functional Polymer-Based Nerve Guide Conduits to Promote Peripheral Nerve Regeneration (Adv. Mater. Interfaces 14/2020). <i>Advanced Materials Interfaces</i> , 2020 , 7, 2070081	4.6	3
683	Highly Enhanced Antitumor Immunity by a Three-Barreled Strategy of the l-Arginine-Promoted Nanovaccine and Gene-Mediated PD-L1 Blockade. <i>ACS Applied Materials & Description</i> , 12, 41	1 <i>2</i> 7 ⁵ 41	137
682	A novel GSH responsive poly(alpha-lipoic acid) nanocarrier bonding with the honokiol-DMXAA conjugate for combination therapy. <i>Science China Materials</i> , 2020 , 63, 307-315	7.1	6
681	Enhanced nanoparticle accumulation by tumor-acidity-activatable release of sildenafil to induce vasodilation. <i>Biomaterials Science</i> , 2020 , 8, 3052-3062	7.4	10
680	Two-dimensional nanosheets with high curcumin loading content for multimodal imaging-guided combined chemo-photothermal therapy. <i>Biomaterials</i> , 2019 , 223, 119470	15.6	23
679	Synthesis of PEGylated Salicylaldehyde Azine via Metal-free Click Chemistry for Cellular Imaging Applications. <i>Chemical Research in Chinese Universities</i> , 2019 , 35, 929-936	2.2	1

678	Porphyrin-based covalent organic framework nanoparticles for photoacoustic imaging-guided photodynamic and photothermal combination cancer therapy. <i>Biomaterials</i> , 2019 , 223, 119459	15.6	103
677	Combretastatin A4 Nanoparticles Combined with Hypoxia-Sensitive Imiquimod: A New Paradigm for the Modulation of Host Immunological Responses during Cancer Treatment. <i>Nano Letters</i> , 2019 , 19, 8021-8031	11.5	40
676	Enhanced local cancer therapy using a CA4P and CDDP co-loaded polypeptide gel depot. <i>Biomaterials Science</i> , 2019 , 7, 860-866	7.4	23
675	Selectively Potentiating Hypoxia Levels by Combretastatin A4 Nanomedicine: Toward Highly Enhanced Hypoxia-Activated Prodrug Tirapazamine Therapy for Metastatic Tumors. <i>Advanced Materials</i> , 2019 , 31, e1805955	24	103
674	Polymer scaffolds facilitate spinal cord injury repair. Acta Biomaterialia, 2019, 88, 57-77	10.8	62
673	Gradiently degraded electrospun polyester scaffolds with cytostatic for urothelial carcinoma therapy. <i>Biomaterials Science</i> , 2019 , 7, 963-974	7.4	15
672	Immunomodulatory Nanosystems. Advanced Science, 2019, 6, 1900101	13.6	147
671	Positive feedback nanoamplifier responded to tumor microenvironments for self-enhanced tumor imaging and therapy. <i>Biomaterials</i> , 2019 , 216, 119255	15.6	46
670	Mild synthesis of environment-friendly thermoplastic triblock copolymer elastomers through combination of ring-opening and RAFT polymerization. <i>Polymer Chemistry</i> , 2019 , 10, 3610-3620	4.9	10
669	An eximious and affordable GSH stimulus-responsive poly(Hipoic acid) nanocarrier bonding combretastatin A4 for tumor therapy. <i>Biomaterials Science</i> , 2019 , 7, 2803-2811	7.4	27
668	Co-administration of combretastatin A4 nanoparticles and sorafenib for systemic therapy of hepatocellular carcinoma. <i>Acta Biomaterialia</i> , 2019 , 92, 229-240	10.8	24
667	Injectable Cholesterol-Enhanced Stereocomplex Polylactide Thermogel Loading Chondrocytes for Optimized Cartilage Regeneration. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1900312	10.1	57
666	PI3Kgamma Inhibitor Attenuates Immunosuppressive Effect of Poly(l-Glutamic Acid)-Combretastatin A4 Conjugate in Metastatic Breast Cancer. <i>Advanced Science</i> , 2019 , 6, 1900327	13.6	29
665	One-Pot Synthesis of Diblock Polyesters by Catalytic Terpolymerization of Lactide, Epoxides, and Anhydrides. <i>Macromolecules</i> , 2019 , 52, 3462-3470	5.5	30
664	Covalent Organic Nanosheets Integrated Heterojunction with Two Strategies To Overcome Hypoxic-Tumor Photodynamic Therapy. <i>Chemistry of Materials</i> , 2019 , 31, 3313-3323	9.6	75
663	Evaluation of Polymer Nanoformulations in Hepatoma Therapy by Established Rodent Models. <i>Theranostics</i> , 2019 , 9, 1426-1452	12.1	45
662	Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. <i>Journal of Controlled Release</i> , 2019 , 302, 19-41	11.7	158
661	Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering. <i>Biomacromolecules</i> , 2019 , 20, 1478-1492	6.9	163

660	Tumor microenvironment as the "regulator" and "target" for gene therapy. <i>Journal of Gene Medicine</i> , 2019 , 21, e3088	3.5	27
659	Toughening modification of PLLA with PCL in the presence of PCL-b-PLLA diblock copolymers as compatibilizer. <i>Polymers for Advanced Technologies</i> , 2019 , 30, 963-972	3.2	16
658	A GSH-Gated DNA Nanodevice for Tumor-Specific Signal Amplification of microRNA and MR Imaging-Guided Theranostics. <i>Small</i> , 2019 , 15, e1903016	11	36
657	A Tumor-Microenvironment-Activated Nanozyme-Mediated Theranostic Nanoreactor for Imaging-Guided Combined Tumor Therapy. <i>Advanced Materials</i> , 2019 , 31, e1902885	24	143
656	Exploration of Fe-Phenol Complexes for Photothermal Therapy and Photoacoustic Imaging. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 4700-4707	5.5	17
655	Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering. <i>Advanced Functional Materials</i> , 2019 , 29, 1903279	15.6	105
654	Conjugated tri-nuclear salen-Co complexes for the copolymerization of epoxides/CO2: cocatalyst-free catalysis. <i>Green Chemistry</i> , 2019 , 21, 4723-4731	10	20
653	A PEGylated alternating copolymer with oxidation-sensitive phenylboronic ester pendants for anticancer drug delivery. <i>Biomaterials Science</i> , 2019 , 7, 3898-3905	7.4	16
652	Combretastatin A4 Nanodrug-Induced MMP9 Amplification Boosts Tumor-Selective Release of Doxorubicin Prodrug. <i>Advanced Materials</i> , 2019 , 31, e1904278	24	61
651	Tissue Engineering: Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering (Adv. Funct. Mater. 36/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970246	15.6	18
650	Cyanine-Assisted Exfoliation of Covalent Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Tumor Therapy. <i>ACS Applied Materials & Description of Covalent Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Tumor Therapy. ACS Applied Materials & Description of Covalent Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Tumor Therapy. ACS Applied Materials & Description of Covalent Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Tumor Therapy. ACS Applied Materials & Description Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Tumor Therapy. ACS Applied Materials & Description Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Tumor Therapy. ACS Applied Materials & Description Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Tumor Therapy. ACS Applied Materials & Description Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Tumor Therapy. ACS Applied Materials & Description Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Program Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Program Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Program Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Program Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Program Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Program Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Program Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Program Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Program Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Program Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Program Organic F</i>	3-39512	52
649	Multiantigenic Nanoformulations Activate Anticancer Immunity Depending on Size. <i>Advanced Functional Materials</i> , 2019 , 29, 1903391	15.6	23
648	Advances in nanomedicine for cancer starvation therapy. <i>Theranostics</i> , 2019 , 9, 8026-8047	12.1	73
647	Polymer-Mediated Penetration-Independent Cancer Therapy. <i>Biomacromolecules</i> , 2019 , 20, 4258-4271	6.9	30
646	Disease Immunotherapy: Immunomodulatory Nanosystems (Adv. Sci. 17/2019). <i>Advanced Science</i> , 2019 , 6, 1970100	13.6	7
645	Chiral Polypeptide Thermogels Induce Controlled Inflammatory Response as Potential Immunoadjuvants. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 8725-8730	9.5	51
644	Zinc ion coordination significantly improved the transfection efficiency of low molecular weight polyethylenimine. <i>Biomaterials Science</i> , 2019 , 7, 1716-1728	7.4	10
643	Polymer Nanoplatforms at Work in Prostate Cancer Therapy. <i>Advanced Therapeutics</i> , 2019 , 2, 1800122	4.9	10

642	A Strategy of Killing Three Birds with One Stone for Cancer Therapy through Regulating the Tumor Microenvironment by HO-Responsive Gene Delivery System. <i>ACS Applied Materials & Delivery System</i> , 2019 , 11, 47785-47797	9.5	21
641	Engineered nanomedicines with enhanced tumor penetration. <i>Nano Today</i> , 2019 , 29, 100800	17.9	209
640	Multiantigenic Nanovaccines: Multiantigenic Nanoformulations Activate Anticancer Immunity Depending on Size (Adv. Funct. Mater. 49/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970336	15.6	3
639	Dihydroartemisinin increases gemcitabine therapeutic efficacy in ovarian cancer by inducing reactive oxygen species. <i>Journal of Cellular Biochemistry</i> , 2019 , 120, 634-644	4.7	10
638	Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy. <i>Journal of Controlled Release</i> , 2019 , 295, 153-163	11.7	61
637	Enhancing the Stability of Hydrogels by Doubling the Schiff Base Linkages. <i>Macromolecular Chemistry and Physics</i> , 2019 , 220, 1800484	2.6	14
636	Osteoinductive Agents-Incorporated Three-Dimensional Biphasic Polymer Scaffold for Synergistic Bone Regeneration. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 986-995	5.5	16
635	Efficient PD-L1 gene silence promoted by hyaluronidase for cancer immunotherapy. <i>Journal of Controlled Release</i> , 2019 , 293, 104-112	11.7	35
634	A disassembling strategy overcomes the EPR effect and renal clearance dilemma of the multifunctional theranostic nanoparticles for cancer therapy. <i>Biomaterials</i> , 2019 , 197, 284-293	15.6	62
633	Promoting cell growth on porous PLA microspheres through simple degradation methods. <i>Polymer Degradation and Stability</i> , 2019 , 161, 319-325	4.7	7
632	Electrospun polymer biomaterials. <i>Progress in Polymer Science</i> , 2019 , 90, 1-34	29.6	303
631	Polycations for Gene Delivery: Dilemmas and Solutions. <i>Bioconjugate Chemistry</i> , 2019 , 30, 338-349	6.3	41
630	Facile Synthesis of Resveratrol Nanogels with Enhanced Fluorescent Emission. <i>Macromolecular Bioscience</i> , 2019 , 19, e1800438	5.5	3
629	A reduction-sensitive thermo-responsive polymer: Synthesis, characterization, and application in controlled drug release. <i>European Polymer Journal</i> , 2018 , 101, 183-189	5.2	12
628	Self-Stabilized Hyaluronate Nanogel for Intracellular Codelivery of Doxorubicin and Cisplatin to Osteosarcoma. <i>Advanced Science</i> , 2018 , 5, 1700821	13.6	111
627	Antibacterial Hydrogels. <i>Advanced Science</i> , 2018 , 5, 1700527	13.6	409
626	Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair. <i>Acta Biomaterialia</i> , 2018 , 73, 103-111	10.8	84
625	A polypeptide based podophyllotoxin conjugate for the treatment of multi drug resistant breast cancer with enhanced efficiency and minimal toxicity. <i>Acta Biomaterialia</i> , 2018 , 73, 388-399	10.8	33

6	24	Composite PLA/PEG/nHA/Dexamethasone Scaffold Prepared by 3D Printing for Bone Regeneration. <i>Macromolecular Bioscience</i> , 2018 , 18, e1800068	5.5	42	
6	23	Mucoadhesive Cationic Polypeptide Nanogel with Enhanced Penetration for Efficient Intravesical Chemotherapy of Bladder Cancer. <i>Advanced Science</i> , 2018 , 5, 1800004	13.6	69	
6	22	pH- and Amylase-Responsive Carboxymethyl Starch/Poly(2-isobutyl-acrylic acid) Hybrid Microgels as Effective Enteric Carriers for Oral Insulin Delivery. <i>Biomacromolecules</i> , 2018 , 19, 2123-2136	6.9	30	
6.	21	Gold Nanorods Electrostatically Binding Nucleic Acid Probe for In Vivo MicroRNA Amplified Detection and Photoacoustic Imaging-Guided Photothermal Therapy. <i>Advanced Functional Materials</i> , 2018 , 28, 1800490	15.6	73	
6	2 0	Polymer micro/nanocarrier-assisted synergistic chemohormonal therapy for prostate cancer. <i>Biomaterials Science</i> , 2018 , 6, 1433-1444	7.4	8	
6	19	A glutathione-responsive sulfur dioxide polymer prodrug as a nanocarrier for combating drug-resistance in cancer chemotherapy. <i>Biomaterials</i> , 2018 , 178, 706-719	15.6	87	
6	18	Advances in Stimuli-Responsive Polypeptide Nanogels. <i>Small Methods</i> , 2018 , 2, 1700307	12.8	33	
6	17	Photothermal Effect-Triggered Drug Release from Hydrogen Bonding-Enhanced Polymeric Micelles. <i>Biomacromolecules</i> , 2018 , 19, 1950-1958	6.9	22	
6	16	Breaking the Paradox between Catalytic Activity and Stereoselectivity: rac-Lactide Polymerization by Trinuclear Salen & Complexes. <i>Macromolecules</i> , 2018 , 51, 906-913	5.5	43	
6	15	Dual Drug Backboned Shattering Polymeric Theranostic Nanomedicine for Synergistic Eradication of Patient-Derived Lung Cancer. <i>Advanced Materials</i> , 2018 , 30, 1706220	24	95	
6	14	DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS. <i>Journal of the American Society for Mass Spectrometry</i> , 2018 , 29, 704-710	3.5	11	
6	13	One-Step Synthesis of Targeted Acid-Labile Polysaccharide Prodrug for Efficiently Intracellular Drug Delivery. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 539-546	5.5	32	
6	12	A Versatile Method to Prepare Protein Nanoclusters for Drug Delivery. <i>Macromolecular Bioscience</i> , 2018 , 18, 1700282	5.5	11	
6	11	A high sensitive and contaminant tolerant matrix for facile detection of membrane proteins by matrix-assisted laser desorption/ionization mass spectrometry. <i>Analytica Chimica Acta</i> , 2018 , 999, 114-	1226	4	
6	10	High Drug Loading and Sub-Quantitative Loading Efficiency of Polymeric Micelles Driven by Donor-Receptor Coordination Interactions. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1235-1	2 3 8.4	166	
6	09	Macrophages loaded CpG and GNR-PEI for combination of tumor photothermal therapy and immunotherapy. <i>Science China Materials</i> , 2018 , 61, 1484-1494	7.1	23	
6	08	Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas. <i>Nano Research</i> , 2018 , 11, 4806-4822	10	70	
6	07	Highly enhanced cancer immunotherapy by combining nanovaccine with hyaluronidase. Biomaterials, 2018, 171, 198-206	15.6	63	

606	In situ dual-crosslinked nanoparticles for tumor targeting gene delivery. <i>Acta Biomaterialia</i> , 2018 , 65, 349-362	10.8	26
605	Bortezomib Increases the Cancer Therapeutic Efficacy of Poly(amino acid)-Doxorubicin. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 2053-2060	5.5	3
604	DOX/IL-2/IFN-Ito-loaded thermo-sensitive polypeptide hydrogel for efficient melanoma treatment. <i>Bioactive Materials</i> , 2018 , 3, 118-128	16.7	50
603	Highly Bioadhesive Polymer Membrane Continuously Releases Cytostatic and Anti-Inflammatory Drugs for Peritoneal Adhesion Prevention. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 2026-203	6 ^{5.5}	45
602	Dual Stimuli-Responsive Nanoparticle-Incorporated Hydrogels as an Oral Insulin Carrier for Intestine-Targeted Delivery and Enhanced Paracellular Permeation. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 2889-2902	5.5	25
601	Development of Organic/Inorganic Compatible and Sustainably Bioactive Composites for Effective Bone Regeneration. <i>Biomacromolecules</i> , 2018 , 19, 3637-3648	6.9	34
600	Recent progress in polymer-based platinum drug delivery systems. <i>Progress in Polymer Science</i> , 2018 , 87, 70-106	29.6	96
599	Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia. <i>Biomaterials</i> , 2018 , 181, 378-391	15.6	43
598	Precision-guided long-acting analgesia by Gel-immobilized bupivacaine-loaded microsphere. <i>Theranostics</i> , 2018 , 8, 3331-3347	12.1	39
597	Tumor microenvironment-labile polymer-doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma. <i>Acta Biomaterialia</i> , 2018 , 77, 63-73	10.8	57
596	Injectable Enzymatically Cross-linked Hydrogels with Light-Controlled Degradation Profile. <i>Macromolecular Rapid Communications</i> , 2018 , 39, e1800272	4.8	18
595	Polymer nanoparticles as adjuvants in cancer immunotherapy. <i>Nano Research</i> , 2018 , 11, 5769-5786	10	45
594	Poly (l-glutamic acid)-g-methoxy poly (ethylene glycol)-gemcitabine conjugate improves the anticancer efficacy of gemcitabine. <i>International Journal of Pharmaceutics</i> , 2018 , 550, 79-88	6.5	8
593	Ionic-crosslinked polysaccharide/PEI/DNA nanoparticles for stabilized gene delivery. <i>Carbohydrate Polymers</i> , 2018 , 201, 246-256	10.3	23
592	Multifunctional Theranostic Nanoparticles Derived from Fruit-Extracted Anthocyanins with Dynamic Disassembly and Elimination Abilities. <i>ACS Nano</i> , 2018 , 12, 8255-8265	16.7	58
591	Locally Deployable Nanofiber Patch for Sequential Drug Delivery in Treatment of Primary and Advanced Orthotopic Hepatomas. <i>ACS Nano</i> , 2018 , 12, 6685-6699	16.7	68
590	CO2 Controlled Catalysis: Switchable Homopolymerization and Copolymerization. <i>Macromolecules</i> , 2018 , 51, 4699-4704	5.5	34
589	Tailoring Platinum(IV) Amphiphiles for Self-Targeting All-in-One Assemblies as Precise Multimodal Theranostic Nanomedicine. <i>ACS Nano</i> , 2018 , 12, 7272-7281	16.7	80

588	From Antimicrobial Peptides to Antimicrobial Poly(Amino acid)s. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800354	10.1	61
587	Organometallic catalysts for the ring-opening polymerization of lactide. <i>Scientia Sinica Chimica</i> , 2018 , 48, 874-882	1.6	2
586	Degradable Three Dimensional-Printed Polylactic Acid Scaffold with Long-Term Antibacterial Activity. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 2047-2054	8.3	24
585	In situ formation of hydrophobic clusters to enhance mechanical performance of biodegradable poly(l-glutamic acid)/poly(Eaprolactone) hydrogel towards meniscus tissue engineering. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 7822-7833	7-3	16
584	One-pot copolymerization of epoxides/carbon dioxide and lactide using a ternary catalyst system. <i>Catalysis Science and Technology</i> , 2018 , 8, 6452-6457	5.5	11
583	Engineering Metal-Organic Frameworks for Photoacoustic Imaging-Guided Chemo-/Photothermal Combinational Tumor Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 41035-41045	9.5	59
582	Precise nanomedicine for intelligent therapy of cancer. <i>Science China Chemistry</i> , 2018 , 61, 1503-1552	7.9	256
581	Poly(ethylene glycol)-poly-l-glutamate complexed with polyethyleneimine-polyglycine for highly efficient gene delivery in vitro and in vivo. <i>Biomaterials Science</i> , 2018 , 6, 3053-3062	7.4	7
580	Zinc and Magnesium Complexes Bearing Oxazoline-Derived Ligands and Their Application for Ring Opening Polymerization of Cyclic Esters. <i>ACS Omega</i> , 2018 , 3, 11703-11709	3.9	3
579	Sandwich-Like Fibers/Sponge Composite Combining Chemotherapy and Hemostasis for Efficient Postoperative Prevention of Tumor Recurrence and Metastasis. <i>Advanced Materials</i> , 2018 , 30, e180321	7 ²⁴	77
578	PEGylated Poly(且ipoic acid) Loaded with Doxorubicin as a pH and Reduction Dual Responsive Nanomedicine for Breast Cancer Therapy. <i>Biomacromolecules</i> , 2018 , 19, 4492-4503	6.9	34
577	Injectable Hydrogels as Unique Platforms for Local Chemotherapeutics-Based Combination Antitumor Therapy. <i>Macromolecular Bioscience</i> , 2018 , 18, e1800240	5.5	36
576	Pyrolysis mechanism of Poly(lactic acid) for giving lactide under the catalysis of tin. <i>Polymer Degradation and Stability</i> , 2018 , 157, 212-223	4.7	14
575	Polylysine-modified polyethylenimine polymer can generate genetically engineered mesenchymal stem cells for combinational suicidal gene therapy in glioblastoma. <i>Acta Biomaterialia</i> , 2018 , 80, 144-15	3 ^{10.8}	24
574	Synthesis of PEGylated alternating copolymer bearing thioether pendants for oxidation responsive drug delivery. <i>European Polymer Journal</i> , 2018 , 107, 308-314	5.2	9
573	The effect of PLGA-based hydrogel scaffold for improving the drug maximum-tolerated dose for in situ osteosarcoma treatment. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 172, 387-394	6	17
572	Hydrogels based on pH-responsive reversible carbonflitrogen double-bond linkages for biomedical applications. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 1765-1778	7.8	49
571	Molecular Strings Significantly Improved the Gene Transfection Efficiency of Polycations. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11992-12000	16.4	72

570	Injectable Bioresponsive Gel Depot for Enhanced Immune Checkpoint Blockade. <i>Advanced Materials</i> , 2018 , 30, e1801527	24	179
569	A Surface Pattern on MALDI Steel Plate for One-Step In-Situ Self-Desalting and Enrichment of Peptides/Proteins. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 428-433	3.5	9
568	Acid-sensitive dextran prodrug: A higher molecular weight makes a better efficacy. <i>Carbohydrate Polymers</i> , 2017 , 161, 33-41	10.3	35
567	Targeted sustained delivery of antineoplastic agent with multicomponent polylactide stereocomplex micelle. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2017 , 13, 1279-1288	6	22
566	Injectable Hydrogel-Microsphere Construct with Sequential Degradation for Locally Synergistic Chemotherapy. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 3487-3496	9.5	59
565	Multi-responsive core-crosslinked poly (thiolether ester) micelles for smart drug delivery. <i>Polymer</i> , 2017 , 110, 235-241	3.9	14
564	Multidentate Comb-Shaped Polypeptides Bearing Trithiocarbonate Functionality: Synthesis and Application for Water-Soluble Quantum Dots. <i>Biomacromolecules</i> , 2017 , 18, 924-930	6.9	12
563	A versatile platform for surface modification of microfluidic droplets. <i>Lab on A Chip</i> , 2017 , 17, 635-639	7.2	10
562	Inhibiting Solid Tumor Growth In Vivo by Non-Tumor-Penetrating Nanomedicine. Small, 2017, 13, 16009	954	31
561	Recent progress in cationic polymeric gene carriers for cancer therapy. <i>Science China Chemistry</i> , 2017 , 60, 319-328	7.9	28
560	A pH-Responsive Detachable PEG Shielding Strategy for Gene Delivery System in Cancer Therapy. <i>Biomacromolecules</i> , 2017 , 18, 1342-1349	6.9	87
559	Peptide-Based and Polypeptide-Based Gene Delivery Systems. <i>Topics in Current Chemistry</i> , 2017 , 375, 32	7.2	22
558	Nanotherapeutics relieve rheumatoid arthritis. <i>Journal of Controlled Release</i> , 2017 , 252, 108-124	11.7	118
557	A poly(l-glutamic acid)-combretastatin A4 conjugate for solid tumor therapy: Markedly improved therapeutic efficiency through its low tissue penetration in solid tumor. <i>Acta Biomaterialia</i> , 2017 , 53, 179-189	10.8	52
556	Investigation on the controlled synthesis and post-modification of poly-[(N-2-hydroxyethyl)-aspartamide]-based polymers. <i>Polymer Chemistry</i> , 2017 , 8, 1872-1877	4.9	10
555	Selective in vivo metabolic cell-labeling-mediated cancer targeting. <i>Nature Chemical Biology</i> , 2017 , 13, 415-424	11.7	188
554	Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy. <i>Journal of Controlled Release</i> , 2017 , 255, 81-93	11.7	76
553	pH Triggered Size Increasing Gene Carrier for Efficient Tumor Accumulation and Excellent Antitumor Effect. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 15297-15306	9.5	22

552	Synthesis of multi-arm poly(l-lactide) and its modification on linear polylactide. <i>Polymer Bulletin</i> , 2017 , 74, 245-262	2.4	9	
551	Targeted hydroxyethyl starch prodrug for inhibiting the growth and metastasis of prostate cancer. <i>Biomaterials</i> , 2017 , 116, 82-94	15.6	82	
550	Injectable Polysaccharide Hydrogels as Biocompatible Platforms for Localized and Sustained Delivery of Antibiotics for Preventing Local Infections. <i>Macromolecular Bioscience</i> , 2017 , 17, 1600347	5.5	24	
549	Robust Fuel Catalyzed DNA Molecular Machine for in Vivo MicroRNA Detection. <i>Advanced Biology</i> , 2017 , 1, 1700060	3.5	7	
548	Sequentially Responsive Shell-Stacked Nanoparticles for Deep Penetration into Solid Tumors. <i>Advanced Materials</i> , 2017 , 29, 1701170	24	279	
547	Poly(L-lactide)-grafted bioglass/poly(lactide-co-glycolide) scaffolds with supercritical CO2 foaming reprocessing for bone tissue engineering. <i>Chemical Research in Chinese Universities</i> , 2017 , 33, 499-506	2.2	3	
546	Ring-Opening Polymerization of Lactide Catalyzed by Bimetallic Salen-Type Titanium Complexes. <i>Chinese Journal of Chemistry</i> , 2017 , 35, 640-644	4.9	5	
545	Thermo-sensitive polypeptide hydrogel for locally sequential delivery of two-pronged antitumor drugs. <i>Acta Biomaterialia</i> , 2017 , 58, 44-53	10.8	68	
544	A chitin film containing basic fibroblast growth factor with a chitin-binding domain as wound dressings. <i>Carbohydrate Polymers</i> , 2017 , 174, 723-730	10.3	25	
543	Injectable Polypeptide Hydrogel as Biomimetic Scaffolds with Tunable Bioactivity and Controllable Cell Adhesion. <i>Biomacromolecules</i> , 2017 , 18, 1411-1418	6.9	43	
542	Legumain-cleavable 4-arm poly(ethylene glycol)-doxorubicin conjugate for tumor specific delivery and release. <i>Acta Biomaterialia</i> , 2017 , 54, 227-238	10.8	18	
541	Polylysine-modified polyethylenimine (PEI-PLL) mediated VEGF gene delivery protects dopaminergic neurons in cell culture and in rat models of Parkinson's Disease (PD). <i>Acta Biomaterialia</i> , 2017 , 54, 58-68	10.8	28	
54C	High Melt Strength and High Toughness PLLA/PBS Blends by Copolymerization and in Situ Reactive Compatibilization. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 52-62	3.9	35	
539	Combination therapy of pDNA and siRNA by versatile carriers composed of poly(L-serine) modified polyethylenimines. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 937-946	7.8	7	
538	Positively charged polypeptide nanogel enhances mucoadhesion and penetrability of 10-hydroxycamptothecin in orthotopic bladder carcinoma. <i>Journal of Controlled Release</i> , 2017 , 259, 13-	6-148	68	
537	Controlled Syntheses of Functional Polypeptides. ACS Symposium Series, 2017, 149-170	0.4	1	
536	Dimeric camptothecin-loaded RGD-modified targeted cationic polypeptide-based micelles with high drug loading capacity and redox-responsive drug release capability. <i>Biomaterials Science</i> , 2017 , 5, 2501-2510	7.4	23	
535	Enzymatically crosslinked hydrogels based on linear poly(ethylene glycol) polymer: performance and mechanism. <i>Polymer Chemistry</i> , 2017 , 8, 7017-7024	4.9	12	

534	Preparation and Thermal Properties of Polycarbonates/esters Catalyzed by Using Dinuclear Salph-Al from Ring-Opening Polymerization of Epoxide Monomers. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 3135-3140	4.5	11
533	Compact Vesicles Self-Assembled from Binary Graft Copolymers with High Hydrophilic Fraction for Potential Drug/Protein Delivery. <i>ACS Macro Letters</i> , 2017 , 6, 1186-1190	6.6	22
532	Curcumin-encapsulated polymeric nanoparticles for metastatic osteosarcoma cells treatment. <i>Science China Materials</i> , 2017 , 60, 995-1007	7.1	7
531	Scavenger Receptor-Mediated Targeted Treatment of Collagen-Induced Arthritis by Dextran Sulfate-Methotrexate Prodrug. <i>Theranostics</i> , 2017 , 7, 97-105	12.1	66
530	Rapid fluorescence imaging of spinal cord following epidural administration of a nerve-highlighting fluorophore. <i>Theranostics</i> , 2017 , 7, 1863-1874	12.1	8
529	A cool and high salt-tolerant ionic liquid matrix for preferential ionization of phosphopeptides by negative ion MALDI-MS. <i>New Journal of Chemistry</i> , 2017 , 41, 12241-12249	3.6	5
528	Reduction-Responsive Polypeptide Micelles for Intracellular Delivery of Antineoplastic Agent. <i>Biomacromolecules</i> , 2017 , 18, 3291-3301	6.9	44
527	pH and redox dual-sensitive polysaccharide nanoparticles for the efficient delivery of doxorubicin. <i>Biomaterials Science</i> , 2017 , 5, 2169-2178	7.4	41
526	Polymer materials for prevention of postoperative adhesion. <i>Acta Biomaterialia</i> , 2017 , 61, 21-40	10.8	80
525	A pH-sensitive cationic micelle for siRNA delivery. <i>Journal of Controlled Release</i> , 2017 , 259, e47	11.7	5
524	A facile pH-sensitive shielding strategy for polycationic gene delivery system. <i>Journal of Controlled Release</i> , 2017 , 259, e158-e159	11.7	
523	Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. <i>Advanced Drug Delivery Reviews</i> , 2017 , 115, 115-154	18.5	237
522	Thermal Properties of Polylactides with Different Stereoisomers of Lactides Used as Comonomers. <i>Macromolecules</i> , 2017 , 50, 6064-6073	5.5	20
521	Synthesis of a phenylboronic ester-linked PEG-lipid conjugate for ROS-responsive drug delivery. <i>Polymer Chemistry</i> , 2017 , 8, 6209-6216	4.9	37
520	Injectable Thermosensitive Polypeptide-Based CDDP-Complexed Hydrogel for Improving Localized Antitumor Efficacy. <i>Biomacromolecules</i> , 2017 , 18, 4341-4348	6.9	29
519	Air-Stable SalenIron Complexes: Stereoselective Catalysts for Lactide and Ecaprolactone Polymerization through in Situ Initiation. <i>Macromolecules</i> , 2017 , 50, 9188-9195	5.5	43
518	Poly(lactic acid) Controlled Drug Delivery. Advances in Polymer Science, 2017, 109-138	1.3	13
517	Receptor and Microenvironment Dual-Recognizable Nanogel for Targeted Chemotherapy of Highly Metastatic Malignancy. <i>Nano Letters</i> , 2017 , 17, 4526-4533	11.5	102

(2016-2017)

516	Effect of the different architectures and molecular weights on stereocomplex in enantiomeric polylactides-b-MPEG block copolymers. <i>Polymer</i> , 2017 , 123, 49-54	3.9	11
515	Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor. <i>Acta Biomaterialia</i> , 2017 , 47, 124-134	10.8	170
514	Synthesis of PLLA-based block copolymers for improving melt strength and toughness of PLLA by in situ reactive blending. <i>Polymer Degradation and Stability</i> , 2017 , 136, 58-70	4.7	18
513	Microstructure and melting behavior of a solution-cast polylactide stereocomplex: Effect of annealing. <i>Journal of Applied Polymer Science</i> , 2017 , 134,	2.9	3
512	Determination of D-lactide content in lactide stereoisomeric mixture using gas chromatography-polarimetry. <i>Talanta</i> , 2017 , 164, 268-274	6.2	5
511	Phenylboronic Acid-Cross-Linked Nanoparticles with Improved Stability as Dual Acid-Responsive Drug Carriers. <i>Macromolecular Bioscience</i> , 2017 , 17, 1600227	5.5	7
510	An Analytical Method for Determining Residual Lactide in Polylactide by Gas Chromatography. <i>Analytical Sciences</i> , 2017 , 33, 235-238	1.7	
509	Recent Advances in Application of Poly-Epsilon-Caprolactone and its Derivative Copolymers for Controlled Release of Anti-Tumor Drugs. <i>Current Cancer Drug Targets</i> , 2017 , 17, 445-455	2.8	2
508	Intracellularly Swollen Polypeptide Nanogel Assists Hepatoma Chemotherapy. <i>Theranostics</i> , 2017 , 7, 703-716	12.1	41
507	Injectable electroactive hydrogels based on Pluronic□ F127 and tetraaniline copolymer. <i>European Polymer Journal</i> , 2017 , 88, 67-74	5.2	13
506	Unique Fractional Crystallization of Poly(l-lactide)/Poly(l-2-hydroxyl-3-methylbutanoic acid) Blend. <i>Macromolecules</i> , 2017 , 50, 4707-4714	5.5	3
505	Dual acid-responsive supramolecular nanoparticles as new anticancer drug delivery systems. <i>Biomaterials Science</i> , 2016 , 4, 104-14	7.4	20
504	Amphiphilic Polycarbonates from Carborane-Installed Cyclic Carbonates as Potential Agents for Boron Neutron Capture Therapy. <i>Bioconjugate Chemistry</i> , 2016 , 27, 2214-23	6.3	27
503	Simultaneously Photo-Cleavable and Activatable Prodrug-Backboned Block Copolymer Micelles for Precise Anticancer Drug Delivery. <i>Advanced Healthcare Materials</i> , 2016 , 5, 2493-2499	10.1	43
502	Drug binding rate regulates the properties of polysaccharide prodrugs. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 5167-5177	7.3	36
501	Synthesis and characterization of tannin grafted polycaprolactone. <i>Journal of Colloid and Interface Science</i> , 2016 , 479, 160-164	9.3	17
500	Toughening modification of PLLA by combination of copolymerization and in situ reactive blending. <i>RSC Advances</i> , 2016 , 6, 113366-113376	3.7	6
499	Injectable Polypeptide Hydrogels with Tunable Microenvironment for 3D Spreading and Chondrogenic Differentiation of Bone-Marrow-Derived Mesenchymal Stem Cells. Biomacromolecules, 2016, 17, 3862-3871	6.9	46

498	Injectable, Biomolecule-Responsive Polypeptide Hydrogels for Cell Encapsulation and Facile Cell Recovery through Triggered Degradation. <i>ACS Applied Materials & Degradation and Facile Cell Recovery through Triggered Degradation and Facile Cell Recovery through Triggered Degradation and Facile Cell Recovery through Triggered Degradation. <i>ACS Applied Materials & Degradation and Facile Cell Recovery through Triggered Degradation and Triggered Degra</i></i>	2 ^{9.5}	42
497	Gold-Nanorods-Based Gene Carriers with the Capability of Photoacoustic Imaging and Photothermal Therapy. <i>ACS Applied Materials & Description</i> (1997) 1158-31566	9.5	42
496	Production and clinical development of nanoparticles for gene delivery. <i>Molecular Therapy - Methods and Clinical Development</i> , 2016 , 3, 16023	6.4	164
495	A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation. <i>Scientific Reports</i> , 2016 , 6, 20770	4.9	45
494	Copolymer of lactide and Eaprolactone catalyzed by bimetallic Schiff base aluminum complexes. <i>Science China Chemistry</i> , 2016 , 59, 1384-1389	7.9	12
493	A non-viral suicide gene delivery system traversing the blood brain barrier for non-invasive glioma targeting treatment. <i>Journal of Controlled Release</i> , 2016 , 243, 357-369	11.7	52
492	Self-Targeted Polysaccharide Prodrug Suppresses Orthotopic Hepatoma. <i>Molecular Pharmaceutics</i> , 2016 , 13, 4231-4235	5.6	21
491	Protein-Cross-Linked Hydrogels with Tailored Swelling and Bioactivity Performance: A Comparative Study. <i>ACS Applied Materials & Empty Study. ACS Applied Materials & Empty Study</i> . 8, 30788-30796	9.5	14
490	Effect of blending HA-g-PLLA on xanthohumol-loaded PLGA fiber membrane. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 146, 221-7	6	16
489	Cisplatin Loaded Poly(L-glutamic acid)-g-Methoxy Poly(ethylene glycol) Complex Nanoparticles for Potential Cancer Therapy: Preparation, In Vitro and In Vivo Evaluation. <i>Journal of Biomedical Nanotechnology</i> , 2016 , 12, 69-78	4	45
488	Polymeric nanostructured materials for biomedical applications. <i>Progress in Polymer Science</i> , 2016 , 60, 86-128	29.6	209
487	Reactive Oxygen Species (ROS) Responsive Polymers for Biomedical Applications. <i>Macromolecular Bioscience</i> , 2016 , 16, 635-46	5.5	2 10
486	Improved cellular infiltration into 3D interconnected microchannel scaffolds formed by using melt-spun sacrificial microfibers. <i>RSC Advances</i> , 2016 , 6, 2131-2134	3.7	7
485	Compatibility, mechanical properties and stability of blends of polylactide and polyurethane based on poly(ethylene glycol)-b-polylactide copolymers by chain extension with diisocyanate. <i>Polymer Degradation and Stability</i> , 2016 , 125, 148-155	4.7	26
484	Co-delivery of chemotherapeutics and proteins for synergistic therapy. <i>Advanced Drug Delivery Reviews</i> , 2016 , 98, 64-76	18.5	138
483	Mesomeric configuration makes polyleucine micelle an optimal nanocarrier. <i>Biomaterials Science</i> , 2016 , 4, 814-8	7.4	13
482	A charge-conversional intracellular-activated polymeric prodrug for tumor therapy. <i>Polymer Chemistry</i> , 2016 , 7, 2253-2263	4.9	30
481	Kartogenin-Incorporated Thermogel Supports Stem Cells for Significant Cartilage Regeneration. <i>ACS Applied Materials & District Materia</i>	9.5	119

(2016-2016)

480	Enhanced in Vitro Mineralization and in Vivo Osteogenesis of Composite Scaffolds through Controlled Surface Grafting of L-Lactic Acid Oligomer on Nanohydroxyapatite. <i>Biomacromolecules</i> , 2016 , 17, 818-29	6.9	28
479	Bimetallic Schiff base complexes for stereoselective polymerisation of racemic-lactide and copolymerisation of racemic-lactide with Eaprolactone. <i>RSC Advances</i> , 2016 , 6, 17531-17538	3.7	28
478	Activated macrophage-targeted dextran-methotrexate/folate conjugate prevents deterioration of collagen-induced arthritis in mice. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 2102-2113	7.3	54
477	Multifunctional single-drug loaded nanoparticles for enhanced cancer treatment with low toxicity in vivo. <i>RSC Advances</i> , 2016 , 6, 20366-20373	3.7	9
476	Quantification of residual monomer in polylactide by gas chromatographic internal standard method. <i>Polymer Testing</i> , 2016 , 50, 79-82	4.5	8
475	Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2016 , 12, 377-86	6	53
474	Injectable in situ forming poly(l-glutamic acid) hydrogels for cartilage tissue engineering. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 947-961	7.3	62
473	Rigid linked dinuclear salph-co(III) catalyst for carbondioxide/epoxides copolymerization. <i>Applied Catalysis B: Environmental</i> , 2016 , 182, 580-586	21.8	18
472	Reinforced electrospun PLLA fiber membrane via chemical crosslinking. <i>European Polymer Journal</i> , 2016 , 74, 101-108	5.2	35
471	A cooperative polymeric platform for tumor-targeted drug delivery. <i>Chemical Science</i> , 2016 , 7, 728-736	9.4	43
470	Synergistic therapeutic effects of Schiff's base cross-linked injectable hydrogels for local co-delivery of metformin and 5-fluorouracil in a mouse colon carcinoma model. <i>Biomaterials</i> , 2016 , 75, 140, 163	15.6	118
	75, 148-162	,	
469	Methoxy poly (ethylene glycol)-block-poly (glutamic acid)-graft-6-(2-nitroimidazole) hexyl amine nanoparticles for potential hypoxia-responsive delivery of doxorubicin. <i>Journal of Biomaterials Science, Polymer Edition,</i> 2016 , 27, 40-54	3.5	30
469 468	Methoxy poly (ethylene glycol)-block-poly (glutamic acid)-graft-6-(2-nitroimidazole) hexyl amine nanoparticles for potential hypoxia-responsive delivery of doxorubicin. <i>Journal of Biomaterials</i>		30
	Methoxy poly (ethylene glycol)-block-poly (glutamic acid)-graft-6-(2-nitroimidazole) hexyl amine nanoparticles for potential hypoxia-responsive delivery of doxorubicin. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2016 , 27, 40-54 Modulation of Osteogenesis in MC3T3-E1 Cells by Different Frequency Electrical Stimulation. <i>PLoS</i>	3.5	
468	Methoxy poly (ethylene glycol)-block-poly (glutamic acid)-graft-6-(2-nitroimidazole) hexyl amine nanoparticles for potential hypoxia-responsive delivery of doxorubicin. <i>Journal of Biomaterials Science, Polymer Edition,</i> 2016 , 27, 40-54 Modulation of Osteogenesis in MC3T3-E1 Cells by Different Frequency Electrical Stimulation. <i>PLoS ONE</i> , 2016 , 11, e0154924	3.5	26
468 467	Methoxy poly (ethylene glycol)-block-poly (glutamic acid)-graft-6-(2-nitroimidazole) hexyl amine nanoparticles for potential hypoxia-responsive delivery of doxorubicin. <i>Journal of Biomaterials Science, Polymer Edition,</i> 2016 , 27, 40-54 Modulation of Osteogenesis in MC3T3-E1 Cells by Different Frequency Electrical Stimulation. <i>PLoS ONE</i> , 2016 , 11, e0154924 Solid Tumor Therapy Using a Cannon and Pawn Combination Strategy. <i>Theranostics</i> , 2016 , 6, 1023-30 Thermosensitive Polypeptide Hydrogels as a Platform for ROS-Triggered Cargo Release with Innate	3·5 3·7 12.1	26
468 467 466	Methoxy poly (ethylene glycol)-block-poly (glutamic acid)-graft-6-(2-nitroimidazole) hexyl amine nanoparticles for potential hypoxia-responsive delivery of doxorubicin. <i>Journal of Biomaterials Science, Polymer Edition,</i> 2016 , 27, 40-54 Modulation of Osteogenesis in MC3T3-E1 Cells by Different Frequency Electrical Stimulation. <i>PLoS ONE</i> , 2016 , 11, e0154924 Solid Tumor Therapy Using a Cannon and Pawn Combination Strategy. <i>Theranostics</i> , 2016 , 6, 1023-30 Thermosensitive Polypeptide Hydrogels as a Platform for ROS-Triggered Cargo Release with Innate Cytoprotective Ability under Oxidative Stress. <i>Advanced Healthcare Materials</i> , 2016 , 5, 1979-90 Preparation of high toughness and high transparency polylactide blends resin based on multiarmed	3·5 3·7 12.1	26 20 49

462	Exploring the in vivo fates of RGD and PEG modified PEI/DNA nanoparticles by optical imaging and optoacoustic imaging. <i>RSC Advances</i> , 2016 , 6, 112552-112561	3.7	4
461	Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. <i>Journal of Controlled Release</i> , 2016 , 235, 125-133	11.7	47
460	PCLE68BCL/PLGABEGELGA mixed micelles mediated delivery of mitoxantrone for reversing multidrug resistant in breast cancer. <i>RSC Advances</i> , 2016 , 6, 35318-35327	3.7	4
459	(E)-Propyl Ecyano-4-Hydroxyl Cinnamylate: A High Sensitive and Salt Tolerant Matrix for Intact Protein Profiling by MALDI Mass Spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2016 , 27, 709-18	3.5	14
458	One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy. <i>Carbohydrate Polymers</i> , 2016 , 144, 223-9	10.3	37
457	Combining disulfiram and poly(l-glutamic acid)-cisplatin conjugates for combating cisplatin resistance. <i>Journal of Controlled Release</i> , 2016 , 231, 94-102	11.7	38
456	Enhanced toughness and strength of poly (d-lactide) by stereocomplexation with 5-arm poly (l-lactide). <i>Journal of Applied Polymer Science</i> , 2016 , 133, n/a-n/a	2.9	4
455	One-Step "Click Chemistry"-Synthesized Cross-Linked Prodrug Nanogel for Highly Selective Intracellular Drug Delivery and Upregulated Antitumor Efficacy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 10673-82	9.5	59
454	A comparative study of linear, Y-shaped and linear-dendritic methoxy poly(ethylene glycol)-block-polyamidoamine-block-poly(l-glutamic acid) block copolymers for doxorubicin delivery in vitro and in vivo. <i>Acta Biomaterialia</i> , 2016 , 40, 243-253	10.8	18
453	Single-Stimulus Dual-Drug Sensitive Nanoplatform for Enhanced Photoactivated Therapy. <i>Biomacromolecules</i> , 2016 , 17, 2120-7	6.9	37
452	Functional computer-to-plate near-infrared absorbers as highly efficient photoacoustic dyes. <i>Acta Biomaterialia</i> , 2016 , 43, 262-268	10.8	5
451	Ultrasensitive pH Triggered Charge/Size Dual-Rebound Gene Delivery System. <i>Nano Letters</i> , 2016 , 16, 6823-6831	11.5	155
450	The suppression of metastatic lung cancer by pulmonary administration of polymer nanoparticles for co-delivery of doxorubicin and Survivin siRNA. <i>Biomaterials Science</i> , 2016 , 4, 1646-1654	7.4	35
449	Improved Cell Adhesion and Osteogenesis of op-HA/PLGA Composite by Poly(dopamine)-Assisted Immobilization of Collagen Mimetic Peptide and Osteogenic Growth Peptide. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 26559-26569	9.5	64
448	Enzymatically Synthesized Polyesters for Drug Delivery 2016 , 61-80		
447	Highly Fluorescent Gene Carrier Based on Ag-Au Alloy Nanoclusters. <i>Macromolecular Bioscience</i> , 2016 , 16, 160-7	5.5	27
446	Acetalated-dextran as valves of mesoporous silica particles for pH responsive intracellular drug delivery. <i>RSC Advances</i> , 2015 , 5, 9546-9555	3.7	25
445	Targeted delivery of cisplatin by LHRH-peptide conjugated dextran nanoparticles suppresses breast cancer growth and metastasis. <i>Acta Biomaterialia</i> , 2015 , 18, 132-43	10.8	74

(2015-2015)

444	Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. <i>Biomaterials</i> , 2015 , 51, 238-249	15.6	172
443	Cholesterol-Enhanced Polylactide-Based Stereocomplex Micelle for Effective Delivery of Doxorubicin. <i>Materials</i> , 2015 , 8, 216-230	3.5	29
442	Schiff base aluminum catalysts containing morpholinomethyl groups in the ring opening polymerization of rac-lactide. <i>Science China Chemistry</i> , 2015 , 58, 1741-1747	7.9	2
441	Synergistic treatment of cancer stem cells by combinations of antioncogenes and doxorubicin. Journal of Drug Delivery Science and Technology, 2015 , 30, 417-423	4.5	4
440	Zinc complexes bearing tridentate O,N,O-type half-Salen ligands for ring-opening polymerization of lactide. <i>Polymer</i> , 2015 , 71, 1-7	3.9	12
439	miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. <i>Acta Biomaterialia</i> , 2015 , 25, 184-93	10.8	67
438	Preparation of biocompatible, biodegradable and sustainable polylactides catalyzed by aluminum complexes bearing unsymmetrical dinaphthalene-imine derivatives via ring-opening polymerization of lactides. <i>Catalysis Science and Technology</i> , 2015 , 5, 4644-4652	5.5	19
437	5-Fluorouracil loaded thermosensitive PLGAPEGPLGA hydrogels for the prevention of postoperative tendon adhesion. <i>RSC Advances</i> , 2015 , 5, 25295-25303	3.7	17
436	Gelatin Tight-Coated Poly(lactideglycolide) Scaffold Incorporating rhBMP-2 for Bone Tissue Engineering. <i>Materials</i> , 2015 , 8, 1009-1026	3.5	28
435	Guanidinated Thiourea-Decorated Polyethylenimines for Enhanced Membrane Penetration and Efficient siRNA Delivery. <i>Advanced Healthcare Materials</i> , 2015 , 4, 1369-75	10.1	9
434	Versatile preparation of intracellular-acidity-sensitive oxime-linked polysaccharide-doxorubicin conjugate for malignancy therapeutic. <i>Biomaterials</i> , 2015 , 54, 72-86	15.6	108
433	Cisplatin-loaded polymeric nanoparticles: characterization and potential exploitation for the treatment of non-small cell lung carcinoma. <i>Acta Biomaterialia</i> , 2015 , 18, 68-76	10.8	34
432	Drug Delivery: pH-Responsive Reversible PEGylation Improves Performance of Antineoplastic Agent (Adv. Healthcare Mater. 6/2015). <i>Advanced Healthcare Materials</i> , 2015 , 4, 786-786	10.1	1
431	Hemi-salen aluminum catalysts bearing N, N, O-tridentate type binaphthyl-Schiff-base ligands for the living ring-opening polymerisation of lactide. <i>RSC Advances</i> , 2015 , 5, 29412-29419	3.7	23
430	Intracellular pH-responsive mesoporous hydroxyapatite nanoparticles for targeted release of anticancer drug. <i>RSC Advances</i> , 2015 , 5, 30920-30928	3.7	22
429	pH-Responsive Poly(ethylene glycol)/Poly(L-lactide) Supramolecular Micelles Based on Host-Guest Interaction. <i>ACS Applied Materials & Samp; Interfaces</i> , 2015 , 7, 8404-11	9.5	61
428	Novel multi-sensitive pseudo-poly(amino acid) for effective intracellular drug delivery. <i>RSC Advances</i> , 2015 , 5, 31972-31983	3.7	17
427	Competitive binding-accelerated insulin release from a polypeptide nanogel for potential therapy of diabetes. <i>Polymer Chemistry</i> , 2015 , 6, 3807-3815	4.9	45

426	Comprehensive studies of pharmacokinetics and biodistribution of indocyanine green and liposomal indocyanine green by multispectral optoacoustic tomography. <i>RSC Advances</i> , 2015 , 5, 3807-3	8373	33
425	Acid-labile boronate-bridged dextran-bortezomib conjugate with up-regulated hypoxic tumor suppression. <i>Chemical Communications</i> , 2015 , 51, 6812-5	5.8	51
424	Biomimetic biphasic scaffolds for osteochondral defect repair. <i>International Journal of Energy Production and Management</i> , 2015 , 2, 221-8	5.3	59
423	Chemically conjugating poly(amidoamine) with chondroitin sulfate to promote CD44-mediated endocytosis for miR-34a delivery. <i>Journal of Controlled Release</i> , 2015 , 213, e95-6	11.7	4
422	Injectable polysaccharide hybrid hydrogels as scaffolds for burn wound healing. <i>RSC Advances</i> , 2015 , 5, 94248-94256	3.7	37
421	PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for localized and combined treatment of human osteosarcoma. <i>Journal of Controlled Release</i> , 2015 , 213, e18	11.7	7
420	Surface modification of 316L stainless steel by grafting methoxy poly(ethylene glycol) to improve the biocompatibility. <i>Chemical Research in Chinese Universities</i> , 2015 , 31, 651-657	2.2	14
419	Intra-Articular Transplantation of Allogeneic BMMSCs Rehabilitates Cartilage Injury of Antigen-Induced Arthritis. <i>Tissue Engineering - Part A</i> , 2015 , 21, 2733-43	3.9	24
418	Charge-conversional zwitterionic copolymer as pH-sensitive shielding system for effective tumor treatment. <i>Acta Biomaterialia</i> , 2015 , 26, 45-53	10.8	47
417	Synergistic effect of PLA P BAT P LA tri-block copolymers with two molecular weights as compatibilizers on the mechanical and rheological properties of PLA/PBAT blends. <i>RSC Advances</i> , 2015 , 5, 73842-73849	3.7	36
416	pH-responsive metallo-supramolecular nanogel for synergistic chemo-photodynamic therapy. <i>Acta Biomaterialia</i> , 2015 , 25, 162-71	10.8	36
415	Controllable synthesis of a narrow polydispersity CO2-based oligo(carbonate-ether) tetraol. <i>Polymer Chemistry</i> , 2015 , 6, 7580-7585	4.9	34
414	Non-symmetrical aluminium salen complexes: Synthesis and their reactivity with cyclic ester. <i>Polymer</i> , 2015 , 77, 122-128	3.9	6
413	Hydroxyapatite and vancomycin composited electrospun polylactide mat for osteomyelitis and bone defect treatment. <i>Journal of Controlled Release</i> , 2015 , 213, e92	11.7	2
412	Reduction-responsive polypeptide nanogel delivers antitumor drug for improved efficacy and safety. <i>Acta Biomaterialia</i> , 2015 , 27, 179-193	10.8	58
411	PEG-polypeptide conjugated with LHRH as an efficient vehicle for targeted delivery of doxorubicin to breast cancer. <i>Journal of Controlled Release</i> , 2015 , 213, e99	11.7	7
410	A pH sensitive co-delivery system of siRNA and doxorubicin for pulmonary administration to B16F10 metastatic lung cancer. <i>RSC Advances</i> , 2015 , 5, 103380-103385	3.7	21
409	EMethacryloyl-L-lysine based polypeptides and their thiol@ne click functionalization. <i>Polymer Chemistry</i> , 2015 , 6, 1758-1767	4.9	9

408	Chirality-mediated polypeptide micelles for regulated drug delivery. Acta Biomaterialia, 2015, 11, 346-5	5 10.8	49
407	Synthesis of thermal and oxidation dual responsive polymers for reactive oxygen species (ROS)-triggered drug release. <i>Polymer Chemistry</i> , 2015 , 6, 738-747	4.9	88
406	Polyion complex micelles with gradient pH-sensitivity for adjustable intracellular drug delivery. <i>Polymer Chemistry</i> , 2015 , 6, 397-405	4.9	69
405	Quantitative synthesis of bis(cyclic carbonate)s by iron catalyst for non-isocyanate polyurethane synthesis. <i>Green Chemistry</i> , 2015 , 17, 373-379	10	60
404	High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications. <i>Acta Biomaterialia</i> , 2015 , 11, 183-90	10.8	48
403	pH-sensitive polyion complex micelles for tunable intracellular drug delivery. <i>Journal of Controlled Release</i> , 2015 , 213, e55	11.7	
402	In-situ forming glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. Journal of Controlled Release, 2015 , 213, e64-5	11.7	2
401	Two-way combination chemotherapy for synergistic tumor capture. <i>Journal of Controlled Release</i> , 2015 , 213, e113-4	11.7	
400	A polyethylenimine derivative-based nanocarrier for the highly efficient delivery of p53 gene to inhibit the proliferation of cancer cells. <i>Journal of Controlled Release</i> , 2015 , 213, e51	11.7	3
399	Hydrophobic N-acetyl-l-leucine grafted polyethylenimine as an efficient carrier for DNAzyme delivery. <i>Journal of Controlled Release</i> , 2015 , 213, e146-7	11.7	4
398	Cisplatin complexes stabilized poly(glutamic acid) for controlled delivery of doxorubicin. <i>Journal of Controlled Release</i> , 2015 , 213, e48-9	11.7	4
397	Self-programmed pH-sensitive polymeric prodrug micelle for synergistic cancer therapy. <i>Journal of Controlled Release</i> , 2015 , 213, e135-6	11.7	4
396	Co-administration of iRGD enhancing the anticancer efficacy of cisplatin-loaded polypeptide nanoparticles. <i>Journal of Controlled Release</i> , 2015 , 213, e145-6	11.7	6
395	Polyethylenimines modified by amino acids with different charge states and hydrophilic/hydrophobic properties for gene carriers. <i>Journal of Controlled Release</i> , 2015 , 213, e41	11.7	
394	PEG-based thermo-responsive poly (胜hioether ester) for ROS-triggered drug delivery. <i>Journal of Controlled Release</i> , 2015 , 213, e22	11.7	4
393	Methylsulfonylmethane-loaded electrospun poly(lactide-co-glycolide) mats for cartilage tissue engineering. <i>RSC Advances</i> , 2015 , 5, 96725-96732	3.7	11
392	pH-responsive PEGylated doxorubicin for efficient cancer chemotherapy. <i>Journal of Controlled Release</i> , 2015 , 213, e149	11.7	1
391	pH-sensitive OEI-poly(aspartic acid-b-lysine) as charge shielding system for gene delivery. <i>Journal of Controlled Release</i> , 2015 , 213, e104	11.7	3

390	Protein-Resistant Biodegradable Amphiphilic Graft Copolymer Vesicles as Protein Carriers. <i>Macromolecular Bioscience</i> , 2015 , 15, 1304-13	5.5	10
389	Acid-Sensitive Nanogels for Synergistic Chemo-Photodynamic Therapy. <i>Macromolecular Bioscience</i> , 2015 , 15, 1563-70	5.5	9
388	Coadministration of Vascular Disrupting Agents and Nanomedicines to Eradicate Tumors from Peripheral and Central Regions. <i>Small</i> , 2015 , 11, 3755-61	11	47
387	Stereocomplex micelle from nonlinear enantiomeric copolymers efficiently transports antineoplastic drug. <i>Nanoscale Research Letters</i> , 2015 , 10, 907	5	16
386	Gold Nanoparticles for Cancer Theranostics. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 1001-1010	4.9	17
385	Pulmonary Codelivery of Doxorubicin and siRNA by pH-Sensitive Nanoparticles for Therapy of Metastatic Lung Cancer. <i>Small</i> , 2015 , 11, 4321-33	11	77
384	Back Cover: Macromol. Biosci. 3/2015. <i>Macromolecular Bioscience</i> , 2015 , 15, 438-438	5.5	
383	Poly(ornithine-co-arginine-co-glycine-co-aspartic Acid): Preparation via NCA Polymerization and its Potential as a Polymeric Tumor-Penetrating Agent. <i>Macromolecular Bioscience</i> , 2015 , 15, 829-38	5.5	4
382	Micellization of antineoplastic agent to significantly upregulate efficacy and security. <i>Macromolecular Bioscience</i> , 2015 , 15, 328-41	5.5	7
381	Nanogel-Incorporated Physical and Chemical Hybrid Gels for Highly Effective Chemo P rotein Combination Therapy. <i>Advanced Functional Materials</i> , 2015 , 25, 6744-6755	15.6	77
380	Characterization of nanostructured ureteral stent with gradient degradation in a porcine model. <i>International Journal of Nanomedicine</i> , 2015 , 10, 3055-64	7.3	31
379	Remission of collagen-induced arthritis through combination therapy of microfracture and transplantation of thermogel-encapsulated bone marrow mesenchymal stem cells. <i>PLoS ONE</i> , 2015 , 10, e0120596	3.7	18
378	Glutathione-degradable drug-loaded nanogel effectively and securely suppresses hepatoma in mouse model. <i>International Journal of Nanomedicine</i> , 2015 , 10, 6587-602	7.3	18
377	Targeted dextran-b-poly(Eaprolactone) micelles for cancer treatments. <i>RSC Advances</i> , 2015 , 5, 18593-1	18 69 0	14
376	Nucleating effect and crystal morphology controlling based on binary phase behavior between organic nucleating agent and poly(l-lactic acid). <i>Polymer</i> , 2015 , 67, 63-71	3.9	56
375	A comparative study of preventing postoperative tendon adhesion using electrospun polyester membranes with different degradation kinetics. <i>Science China Chemistry</i> , 2015 , 58, 1159-1168	7.9	14
374	Fabrication of modular multifunctional delivery for antitumor drugs based on host-guest recognition. <i>Acta Biomaterialia</i> , 2015 , 18, 168-75	10.8	11
373	Crystallization behavior of PEG/PLLA block copolymers: Effect of the different architectures and molecular weights. <i>Polymer</i> , 2015 , 62, 70-76	3.9	34

(2015-2015)

372	hydrogen bonds of nucleobases and acetalated dextran for drug delivery. <i>Polymer Chemistry</i> , 2015 , 6, 3625-3633	4.9	26
371	Phenylboronic acid-functionalized polypeptide nanogel for glucose-responsive insulin release under physiological pH. <i>Journal of Controlled Release</i> , 2015 , 213, e69	11.7	8
370	Multifunctional three-dimensional scaffolds for treatment of spinal cord injury. <i>Journal of Controlled Release</i> , 2015 , 213, e12-3	11.7	
369	Doxorubicin prodrug thermogel as sustained drug reservoir for in situ malignant therapy. <i>Journal of Controlled Release</i> , 2015 , 213, e126-7	11.7	3
368	Localized Co-delivery of Doxorubicin, Cisplatin, and Methotrexate by Thermosensitive Hydrogels for Enhanced Osteosarcoma Treatment. <i>ACS Applied Materials & Discrete Materials &</i>	9.5	105
367	Unusual crystallization and melting behavior induced by microphase separation in MPEG-b-PLLA diblock copolymer. <i>Polymer</i> , 2015 , 80, 123-129	3.9	23
366	Doxorubicin-Loaded Carborane-Conjugated Polymeric Nanoparticles as Delivery System for Combination Cancer Therapy. <i>Biomacromolecules</i> , 2015 , 16, 3980-8	6.9	65
365	New chemosynthetic route to linear Epoly-lysine. <i>Chemical Science</i> , 2015 , 6, 6385-6391	9.4	31
364	Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers. <i>Biomaterials Science</i> , 2015 , 3, 988-1001	7.4	36
363	Novel microcapsules for drug and gene delivery. <i>Journal of Controlled Release</i> , 2015 , 213, e130-1	11.7	1
362	pH and reduction-sensitive disulfide cross-linked polyurethane micelles for bio-triggered anti-tumor drug delivery. <i>Journal of Controlled Release</i> , 2015 , 213, e99-e100	11.7	6
361	Hyaluronic acid based injectable hydrogels for localized and sustained gene delivery. <i>Journal of Controlled Release</i> , 2015 , 213, e140-1	11.7	10
360	Preparation of antibacterial silver nanoparticle-coated PLLA grafted hydroxyapatite/PLLA composite electrospun fiber. <i>Journal of Controlled Release</i> , 2015 , 213, e62-3	11.7	5
359	Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for tumor therapy. <i>Journal of Controlled Release</i> , 2015 , 205, 89-97	11.7	92
358	Doxorubicin-loaded polysaccharide nanoparticles suppress the growth of murine colorectal carcinoma and inhibit the metastasis of murine mammary carcinoma in rodent models. <i>Biomaterials</i> , 2015 , 51, 161-172	15.6	67
357	pH-Responsive Reversible PEGylation Improves Performance of Antineoplastic Agent. <i>Advanced Healthcare Materials</i> , 2015 , 4, 844-55	10.1	28
356	Thermogel-mediated sustained drug delivery for in situ malignancy chemotherapy. <i>Materials Science and Engineering C</i> , 2015 , 49, 262-268	8.3	27
355	Remarkable Melting Behavior of PLA Stereocomplex in Linear PLLA/PDLA Blends. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 2246-2253	3.9	62

354	Codelivery of antitumor drug and gene by a pH-sensitive charge-conversion system. <i>ACS Applied Materials & District Americals (Materials & District Americals & District Americals & District American Act and District American Act and District American Act and District American Act and District A</i>	9.5	59
353	A Novel Nano/Micro-Fibrous Scaffold by Melt-Spinning Method for Bone Tissue Engineering. Journal of Bionic Engineering, 2015 , 12, 117-128	2.7	39
352	Drug-incorporated electrospun fibers efficiently prevent postoperative adhesion. <i>Current Pharmaceutical Design</i> , 2015 , 21, 1960-6	3.3	15
351	Polymeric Nanocarriers for Drug Delivery in Osteosarcoma Treatment. <i>Current Pharmaceutical Design</i> , 2015 , 21, 5187-97	3.3	23
350	Living and stereoselective polymerization of rac-lactide by bimetallic aluminum Schiff-Base complexes. <i>Journal of Polymer Science Part A</i> , 2014 , 52, 1344-1352	2.5	15
349	Development of an arginine-based cationic hydrogel platform: Synthesis, characterization and biomedical applications. <i>Acta Biomaterialia</i> , 2014 , 10, 3098-107	10.8	19
348	Bimetallic salen luminum complexes: synthesis, characterization and their reactivity with rac-lactide and Etaprolactone. <i>Polymer Chemistry</i> , 2014 , 5, 3894	4.9	67
347	In situ preparation of magnetic Fe3O4 nanoparticles inside nanoporous poly(L-glutamic acid)/chitosan microcapsules for drug delivery. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 113, 302-11	6	33
346	Biodegradable, pH-responsive carboxymethyl cellulose/poly(acrylic acid) hydrogels for oral insulin delivery. <i>Macromolecular Bioscience</i> , 2014 , 14, 565-75	5.5	101
345	Cisplatin loaded methoxy poly (ethylene glycol)-block-Poly (L-glutamic acid-co-L-Phenylalanine) nanoparticles against human breast cancer cell. <i>Macromolecular Bioscience</i> , 2014 , 14, 1337-45	5.5	31
344	Pulmonary Drugs and Genes Delivery Systems for Lung Disease Treatment. <i>Chinese Journal of Chemistry</i> , 2014 , 32, 13-21	4.9	8
343	Emulsion click microspheres: morphology/shape control by surface cross-linking and a porogen. <i>RSC Advances</i> , 2014 , 4, 23685-23689	3.7	5
342	Injectable enzymatically crosslinked hydrogels based on a poly(L-glutamic acid) graft copolymer. <i>Polymer Chemistry</i> , 2014 , 5, 5069-5076	4.9	52
341	PEGylated poly(aspartate-g-OEI) copolymers for effective and prolonged gene transfection. Journal of Materials Chemistry B, 2014, 2, 2725-2732	7.3	8
340	New bio-renewable polyester with rich side amino groups from L-lysine via controlled ring-opening polymerization. <i>Polymer Chemistry</i> , 2014 , 5, 6495-6502	4.9	38
339	pH and reduction dual responsive cross-linked polyurethane micelles as an intracellular drug delivery system. <i>RSC Advances</i> , 2014 , 4, 63070-63078	3.7	11
338	Core-cross-linked micellar nanoparticles from a linear-dendritic prodrug for dual-responsive drug delivery. <i>Polymer Chemistry</i> , 2014 , 5, 2801-2808	4.9	48
337	Thiourea modified polyethylenimine for efficient gene delivery mediated by the combination of electrostatic interactions and hydrogen bonds. <i>Polymer Chemistry</i> , 2014 , 5, 3598	4.9	20

Smart Polypeptide Nanocarriers for Malignancy Therapeutics 2014, 523-546 336 1 Electrospinning of aniline pentamer-graft-gelatin/PLLA nanofibers for bone tissue engineering. 10.8 82 335 Acta Biomaterialia, **2014**, 10, 5074-5080 Synergistic antitumor effects of doxorubicin-loaded carboxymethyl cellulose nanoparticle in combination with endostar for effective treatment of non-small-cell lung cancer. Advanced 10.1 25 334 Healthcare Materials, 2014, 3, 1877-88 Polyoxometalates acid treatment for preparing starch nanoparticles. Carbohydrate Polymers, 2014, 10.3 9 333 112, 520-4 Bimetallic Schiff-base aluminum complexes based on pentaerythrityl tetramine and their 28 332 3.7 stereoselective polymerization of racemic lactide. RSC Advances, 2014, 4, 22561 LHRH-peptide conjugated dextran nanoparticles for targeted delivery of cisplatin to breast cancer. 331 7.3 29 Journal of Materials Chemistry B, 2014, 2, 3490-3499 Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary 81 330 5.7 inhalation treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 1086-93 Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism 329 11.7 152 for efficient delivery of paclitaxel. Journal of Controlled Release, 2014, 194, 220-7 In situ electroactive and antioxidant supramolecular hydrogel based on cyclodextrin/copolymer 328 64 5.5 inclusion for tissue engineering repair. Macromolecular Bioscience, 2014, 14, 440-50 One-pot controllable synthesis of oligo(carbonate-ether) triol using a Zn-Co-DMC catalyst: the 327 4.9 44 special role of trimesic acid as an initiation-transfer agent. Polymer Chemistry, 2014, 5, 6171-6179 Charge-conversional PEG-polypeptide polyionic complex nanoparticles from simple blending of a pair of oppositely charged block copolymers as an intelligent vehicle for efficient antitumor drug 326 5.6 51 delivery. Molecular Pharmaceutics, 2014, 11, 1562-74 Synthesis and characterization of half-salen complexes and their application in the polymerization 26 325 4.9 of lactide and Etaprolactone. *Polymer Chemistry*, **2014**, 5, 6857-6864 In vitro studies on regulation of osteogenic activities by electrical stimulus on biodegradable 6.9 62 324 electroactive polyelectrolyte multilayers. Biomacromolecules, 2014, 15, 3146-57 Novel hydroxyl-containing reduction-responsive pseudo-poly(aminoacid) via click polymerization as 323 4.9 24 an efficient drug carrier. Polymer Chemistry, 2014, 5, 4488 PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for 15.6 108 322 osteosarcoma treatment. Biomaterials, 2014, 35, 8723-34 Co-delivery of doxorubicin and paclitaxel with linear-dendritic block copolymer for enhanced 321 7.9 24 anti-cancer efficacy. Science China Chemistry, 2014, 57, 624-632 Synthesis, characterization and application of methyl 3,5-disulfo-benzoate dipotassium dihydrate 320 2.2 5 as nucleating agent for poly(L-lactide). Chemical Research in Chinese Universities, 2014, 30, 333-338 Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of 319 15.6 259 non-small cell lung cancer. Biomaterials, 2014, 35, 6118-29

318	Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering. <i>Biomacromolecules</i> , 2014 , 15, 4495-508	6.9	150
317	Anti-tumor efficacy of c(RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin. <i>Biomaterials</i> , 2014 , 35, 3005-14	15.6	113
316	Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. <i>Biomaterials</i> , 2014 , 35, 3851-64	15.6	219
315	Disulfide cross-linked polyurethane micelles as a reduction-triggered drug delivery system for cancer therapy. <i>Advanced Healthcare Materials</i> , 2014 , 3, 752-60	10.1	89
314	Intercellular pH-responsive histidine modified dextran-g-cholesterol micelle for anticancer drug delivery. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 121, 36-43	6	28
313	A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: preparation, in vitro and in vivo evaluation. <i>International Journal of Pharmaceutics</i> , 2014 , 471, 412-20	6.5	36
312	Synthesis of mesoporous silica nanoparticle-oxaliplatin conjugates for improved anticancer drug delivery. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 117, 75-81	6	60
311	Polymeric Gene Carriers 2014 , 171-202		
310	ERK1/2 pathway-mediated differentiation of IGF-1-transfected spinal cord-derived neural stem cells into oligodendrocytes. <i>PLoS ONE</i> , 2014 , 9, e106038	3.7	17
309	Highly stereoselective bimetallic complexes for lactide and Eaprolactone polymerization. <i>RSC Advances</i> , 2014 , 4, 57210-57217	3.7	12
308	Efficient recovery of precious metal based on AuB bond and electrostatic interaction. <i>Green Chemistry</i> , 2014 , 16, 4875-4878	10	28
307	Hydrophobic polyalanine modified hyperbranched polyethylenimine as high efficient pDNA and siRNA carrier. <i>Macromolecular Bioscience</i> , 2014 , 14, 1406-14	5.5	20
306	Crystallization induced layer-to-layer transitions in symmetric PEO-b-PLLA block copolymer with synchrotron simultaneous SAXS/WAXS investigations. <i>RSC Advances</i> , 2014 , 4, 56346-56354	3.7	12
305	Metallo-supramolecular nanogels for intracellular pH-responsive drug release. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 1697-705	4.8	11
304	Preclinical evaluation of antitumor activity of acid-sensitive PEGylated doxorubicin. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 21202-14	9.5	68
303	Side chain impacts on pH- and thermo-responsiveness of tertiary amine functionalized polypeptides. <i>Journal of Polymer Science Part A</i> , 2014 , 52, 671-679	2.5	19
302	Linear and four-armed poly(l-lactide)-block-poly(d-lactide) copolymers and their stereocomplexation with poly(lactide)s. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2014 , 52, 1560-1567	2.6	48
301	Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. <i>Chemical Communications</i> , 2014 , 50, 11274-90	5.8	139

(2013-2014)

300	Improved mechanical and thermal properties of PLLA by solvent blending with PDLA-b-PEG-b-PDLA. <i>Polymer Degradation and Stability</i> , 2014 , 101, 10-17	4.7	49
299	Insight into the fabrication of polymeric particle based oxygen carriers. <i>International Journal of Pharmaceutics</i> , 2014 , 468, 75-82	6.5	13
298	pH-responsive zwitterionic copolypeptides as charge conversional shielding system for gene carriers. <i>Journal of Controlled Release</i> , 2014 , 174, 117-25	11.7	91
297	Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects. <i>Acta Biomaterialia</i> , 2014 , 10, 1392-402	10.8	95
296	Thermo-/pH-dual responsive properties of hyperbranched polyethylenimine grafted by phenylalanine. <i>Archives of Pharmacal Research</i> , 2014 , 37, 142-8	6.1	6
295	A pH-sensitive charge-conversion system for doxorubicin delivery. <i>Acta Biomaterialia</i> , 2013 , 9, 7672-8	10.8	71
294	Polypeptide/doxorubicin hydrochloride polymersomes prepared through organic solvent-free technique as a smart drug delivery platform. <i>Macromolecular Bioscience</i> , 2013 , 13, 1150-62	5.5	37
293	Poly(ester amide) blend microspheres for oral insulin delivery. <i>International Journal of Pharmaceutics</i> , 2013 , 455, 259-66	6.5	29
292	Redox-sensitive shell-crosslinked polypeptide-block-polysaccharide micelles for efficient intracellular anticancer drug delivery. <i>Macromolecular Bioscience</i> , 2013 , 13, 1249-58	5.5	51
291	The synthesis, deprotection and properties of poly(Ebenzyl-l-glutamate). <i>Science China Chemistry</i> , 2013 , 56, 729-738	7.9	19
290	Polymeric topology and composition constrained polyether-polyester micelles for directional antitumor drug delivery. <i>Acta Biomaterialia</i> , 2013 , 9, 8875-84	10.8	37
289	Modified PLA Homochiral Crystallites Facilitated by the Confinement of PLA Stereocomplexes. <i>Macromolecules</i> , 2013 , 46, 6963-6971	5.5	67
288	Zinc complexes containing asymmetrical N,N,O-tridentate ligands and their application in lactide polymerization. <i>Dalton Transactions</i> , 2013 , 42, 16334-42	4.3	47
287	Thermosensitive hydrogels based on polypeptides for localized and sustained delivery of anticancer drugs. <i>Biomaterials</i> , 2013 , 34, 10338-47	15.6	93
286	Cationic dendron-bearing lipids: investigating structure-activity relationships for small interfering RNA delivery. <i>Biomacromolecules</i> , 2013 , 14, 4289-300	6.9	30
285	Biodegradable stereocomplex micelles based on dextran-block-polylactide as efficient drug deliveries. <i>Langmuir</i> , 2013 , 29, 13072-80	4	70
284	Polylysine-modified polyethylenimine inducing tumor apoptosis as an efficient gene carrier. <i>Journal of Controlled Release</i> , 2013 , 172, 410-8	11.7	49
283	Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. <i>Acta Biomaterialia</i> , 2013 , 9, 9330-42	10.8	157

282	Stereoselective Ring-Opening Polymerization of rac-Lactides Catalyzed by Aluminum Hemi-Salen Complexes. <i>Organometallics</i> , 2013 , 32, 5435-5444	3.8	60
281	Reverse-biomineralization assembly of acid-sensitive biomimetic fibers for hard tissue engineering and drug delivery. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 3694-3704	7-3	12
280	Facile preparation of corn starch nanoparticles by alkali-freezing treatment. RSC Advances, 2013, 3, 134	0 <u>6</u> 7	12
279	The formation and transition behaviors of the mesophase in poly(D-lactide)/poly(L-lactide) blends with low molecular weights. <i>CrystEngComm</i> , 2013 , 15, 6469	3.3	26
278	Crystalline structures of poly(L-lactide) formed under pressure and structure transitions with heating. <i>CrystEngComm</i> , 2013 , 15, 4372	3.3	14
277	pH- and thermo-responsive poly(N-isopropylacrylamide-co-acrylic acid derivative) copolymers and hydrogels with LCST dependent on pH and alkyl side groups. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 5578-5587	7.3	98
276	Efficacious hepatoma-targeted nanomedicine self-assembled from galactopeptide and doxorubicin driven by two-stage physical interactions. <i>Journal of Controlled Release</i> , 2013 , 169, 193-203	11.7	76
275	Biodegradable poly(carbonate-ether)s with thermoresponsive feature at body temperature. Journal of Polymer Science Part A, 2013 , 51, 282-289	2.5	36
274	Biodegradable pH-responsive polyacrylic acid derivative hydrogels with tunable swelling behavior for oral delivery of insulin. <i>Polymer</i> , 2013 , 54, 1786-1793	3.9	104
273	The effect of alkyl side groups on the secondary structure and crystallization of poly(ethylene glycol)-block-polypeptide copolymers. <i>Polymer</i> , 2013 , 54, 2466-2472	3.9	5
272	Mechanical, aging, optical and rheological properties of toughening polylactide by melt blending with poly(ethylene glycol) based copolymers. <i>Polymer Degradation and Stability</i> , 2013 , 98, 1591-1600	4.7	24
271	Self-reinforced endocytoses of smart polypeptide nanogels for "on-demand" drug delivery. <i>Journal of Controlled Release</i> , 2013 , 172, 444-55	11.7	101
270	Disulfide crosslinked PEGylated starch micelles as efficient intracellular drug delivery platforms. <i>Soft Matter</i> , 2013 , 9, 2224	3.6	110
269	pH and reduction dual-responsive nanogel cross-linked by quaternization reaction for enhanced cellular internalization and intracellular drug delivery. <i>Polymer Chemistry</i> , 2013 , 4, 1199-1207	4.9	114
268	Melt stereocomplexation from poly(l-lactic acid) and poly(d-lactic acid) with different optical purity. <i>Polymer Degradation and Stability</i> , 2013 , 98, 844-852	4.7	45
267	Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan. <i>Acta Biomaterialia</i> , 2013 , 9, 7276-88	10.8	75
266	Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy efficacy in vitro. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 69-81	7-3	127
265	Intracellular pH-sensitive supramolecular amphiphiles based on hostguest recognition between benzimidazole and æyclodextrin as potential drug delivery vehicles. <i>Polymer Chemistry</i> , 2013 , 4, 3265	4.9	83

(2013-2013)

264	Nanoscaled poly(L-glutamic acid)/doxorubicin-amphiphile complex as pH-responsive drug delivery system for effective treatment of nonsmall cell lung cancer. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 1781-92	9.5	171
263	pH and reduction dual responsive polyurethane triblock copolymers for efficient intracellular drug delivery. <i>Soft Matter</i> , 2013 , 9, 2637	3.6	96
262	Thermo-responsive flairy-rod[polypeptides for smart antitumor drug delivery. <i>Polymer Chemistry</i> , 2013 , 4, 3345	4.9	60
261	Enhanced endocytosis of acid-sensitive doxorubicin derivatives with intelligent nanogel for improved security and efficacy. <i>Biomaterials Science</i> , 2013 , 1, 633-646	7.4	52
260	Nanoparticles for gene delivery. <i>Small</i> , 2013 , 9, 2034-44	11	108
259	Reduction-responsive cross-linked micelles based on PEGylated polypeptides prepared via click chemistry. <i>Polymer Chemistry</i> , 2013 , 4, 3851	4.9	50
258	Nano-hydroxyapatite surfaces grafted with electroactive aniline tetramers for bone-tissue engineering. <i>Macromolecular Bioscience</i> , 2013 , 13, 356-65	5.5	35
257	pH-Triggered charge-reversal polypeptide nanoparticles for cisplatin delivery: preparation and in vitro evaluation. <i>Biomacromolecules</i> , 2013 , 14, 2023-32	6.9	151
256	Versatile biofunctionalization of polypeptide-based thermosensitive hydrogels via click chemistry. <i>Biomacromolecules</i> , 2013 , 14, 468-75	6.9	56
255	Facile one-pot synthesis of glucose-sensitive nanogel via thiol-ene click chemistry for self-regulated drug delivery. <i>Acta Biomaterialia</i> , 2013 , 9, 6535-43	10.8	55
254	PLA-PEG-PLA and its electroactive tetraaniline copolymer as multi-interactive injectable hydrogels for tissue engineering. <i>Biomacromolecules</i> , 2013 , 14, 1904-12	6.9	92
253	Synthesis of pH-responsive starch nanoparticles grafted poly (l-glutamic acid) for insulin controlled release. <i>European Polymer Journal</i> , 2013 , 49, 2082-2091	5.2	45
252	Electrospun hydroxyapatite grafted poly(l-lactide)/poly(lactic-co-glycolic acid) nanofibers for guided bone regeneration membrane. <i>Composites Science and Technology</i> , 2013 , 79, 8-14	8.6	50
251	Fabrication of poly(l-glutamic acid)/chitosan polyelectrolyte complex porous scaffolds for tissue engineering. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 1541-1551	7.3	51
250	Synthesis and characterization of the mino acid-containing polyester: poly[(Haprolactone)-co-(serine lactone)]. <i>Polymer International</i> , 2013 , 62, 454-462	3.3	4
249	Crystallization behavior and crystallite morphology control of poly(L-lactic acid) through N, N?-bis(benzoyl)sebacic acid dihydrazide. <i>Polymer International</i> , 2013 , 62, 647-657	3.3	24
248	A serum-tolerant hydroxyl-modified polyethylenimine as versatile carriers of pDNA/siRNA. <i>Macromolecular Bioscience</i> , 2013 , 13, 512-22	5.5	20
247	Self-assemblies of pH-activatable PEGylated multiarm poly(lactic acid-co-glycolic acid)-doxorubicin prodrugs with improved long-term antitumor efficacies. <i>Macromolecular Bioscience</i> , 2013 , 13, 1300-7	5.5	27

246	Co-delivery of 10-hydroxycamptothecin with doxorubicin conjugated prodrugs for enhanced anticancer efficacy. <i>Macromolecular Bioscience</i> , 2013 , 13, 584-94	5.5	55
245	Synthesis of electroactive and biodegradable multiblock copolymers based on poly(ester amide) and aniline pentamer. <i>Journal of Polymer Science Part A</i> , 2013 , 51, 4722-4731	2.5	10
244	Flexibility Improvement of Poly(L-lactide) by Reactive Blending With Poly(ether urethane) Containing Poly(ethylene glycol) Blocks. <i>Macromolecular Chemistry and Physics</i> , 2013 , 214, 824-834	2.6	15
243	Effective tumor treatment by VEGF siRNA complexed with hydrophobic poly(amino acid)-modified polyethylenimine. <i>Macromolecular Bioscience</i> , 2013 , 13, 1438-46	5.5	22
242	Nanoporous multilayer poly(L-glutamic acid)/chitosan microcapsules for drug delivery. <i>International Journal of Pharmaceutics</i> , 2012 , 427, 443-51	6.5	31
241	Hydrophobic poly (amino acid) modified PEI mediated delivery of rev-casp-3 for cancer therapy. <i>Biomaterials</i> , 2012 , 33, 4589-96	15.6	71
240	Preparation of Mesoporous Nano-Hydroxyapatite Using a Surfactant Template Method for Protein Delivery. <i>Journal of Bionic Engineering</i> , 2012 , 9, 224-233	2.7	39
239	Direct formation of cationic polypeptide vesicle as potential carrier for drug and gene. <i>Materials Letters</i> , 2012 , 73, 17-20	3.3	27
238	Synthesis and characterization of biodegradable pH-sensitive poly(acrylic acid) hydrogels crosslinked by 2-hydroxyethyl methacrylate modified poly(L-glutamic acid). <i>Materials Letters</i> , 2012 , 77, 74-77	3.3	27
237	Rapid determination of residual monomer in polylactide using thermogravimetric analysis. <i>Polymer Testing</i> , 2012 , 31, 660-662	4.5	7
236	Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. <i>Progress in Polymer Science</i> , 2012 , 37, 237-280	29.6	938
235	Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin. <i>Macromolecular Bioscience</i> , 2012 , 12, 241-50	5.5	112
234	Hyperbranched PEI grafted by hydrophilic amino acid segment poly[N-(2-hydroxyethyl)-L-glutamine] as an efficient nonviral gene carrier. <i>Journal of Applied Polymer Science</i> , 2012 , 123, 2257-2265	2.9	9
233	Photo-cross-linked biodegradable thermo- and pH-responsive hydrogels for controlled drug release. <i>Journal of Applied Polymer Science</i> , 2012 , 123, 2923-2932	2.9	18
232	Investigation of poly(lactide) stereocomplexes: 3-armed poly(L-lactide) blended with linear and 3-armed enantiomers. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 9983-91	3.4	96
231	Methoxypoly(ethylene glycol)-block-poly(L-glutamic acid)-loaded cisplatin and a combination with iRGD for the treatment of non-small-cell lung cancers. <i>Macromolecular Bioscience</i> , 2012 , 12, 1514-23	5.5	72
230	N-isopropylacrylamide-modified polyethylenimines as effective gene carriers. <i>Macromolecular Bioscience</i> , 2012 , 12, 1680-8	5.5	28
229	Tuned morphological electrospun hydroxyapatite nanofibers via pH. <i>Journal of Bionic Engineering</i> , 2012 , 9, 478-483	2.7	8

228	Glucose-sensitive polypeptide micelles for self-regulated insulin release at physiological pH. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12319		84
227	Intracellular microenvironment responsive PEGylated polypeptide nanogels with ionizable cores for efficient doxorubicin loading and triggered release. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14168		121
226	Novel thermo- and pH-responsive hydroxypropyl cellulose- and poly (L-glutamic acid)-based microgels for oral insulin controlled release. <i>Carbohydrate Polymers</i> , 2012 , 89, 1207-14	10.3	51
225	Tunable pH-sensitive poly(tamino ester)s synthesized from primary amines and diacrylates for intracellular drug delivery. <i>Macromolecular Bioscience</i> , 2012 , 12, 1375-83	5.5	41
224	Synthesis of biodegradable and electroactive tetraaniline grafted poly(ester amide) copolymers for bone tissue engineering. <i>Biomacromolecules</i> , 2012 , 13, 2881-9	6.9	90
223	Controlled release of drug via tuning electrospun polymer carrier. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 221-227	2.6	9
222	Soft nanoconfinement effects on the crystallization behavior of asymmetric poly(ethylene oxide)-block-poly(Ecaprolactone) diblock copolymers. <i>Polymer International</i> , 2012 , 61, 909-917	3.3	13
221	Novel biodegradable and pH-sensitive poly(ester amide) microspheres for oral insulin delivery. <i>Macromolecular Bioscience</i> , 2012 , 12, 547-56	5.5	38
220	Biodegradable pH-Dependent Thermo-Sensitive Hydrogels for Oral Insulin Delivery. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 713-719	2.6	7
219	Magnesium and Zinc Complexes Supported by N,O-Bidentate Pyridyl Functionalized Alkoxy Ligands: Synthesis and Immortal ROP of ECL and l-LA. <i>Organometallics</i> , 2012 , 31, 4182-4190	3.8	83
218	Stimuli-sensitive synthetic polypeptide-based materials for drug and gene delivery. <i>Advanced Healthcare Materials</i> , 2012 , 1, 48-78	10.1	278
217	PEI conjugated gold nanoparticles: efficient gene carriers with visible fluorescence. <i>Advanced Healthcare Materials</i> , 2012 , 1, 337-41	10.1	35
216	Synthesis of starBomb-shaped polymer with porphyrin-core and its self-assembly behavior study. Journal of Applied Polymer Science, 2012 , 126, 2067-2076	2.9	9
215	Decisive role of hydrophobic side groups of polypeptides in thermosensitive gelation. <i>Biomacromolecules</i> , 2012 , 13, 2053-9	6.9	88
214	pH-responsive drug delivery systems based on clickable poly(L-glutamic acid)-grafted comb copolymers. <i>Macromolecular Research</i> , 2012 , 20, 292-301	1.9	26
213	The nucleation effect of N,N?-bis(benzoyl) alkyl diacid dihydrazides on crystallization of biodegradable poly(l-lactic acid). <i>Iranian Polymer Journal (English Edition)</i> , 2012 , 21, 435-444	2.3	23
212	Calculating D-lactide content by probability using gas chromatographic data. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2012 , 110, 32-37	3.8	3
211	Facile construction of functional biosurface via SI-ATRP and "click glycosylation". <i>Colloids and Surfaces B: Biointerfaces</i> , 2012 , 93, 188-94	6	21

210	Versatile synthesis of temperature-sensitive polypeptides by click grafting of oligo(ethylene glycol). <i>Polymer Chemistry</i> , 2011 , 2, 2627	4.9	79
209	One-step preparation of reduction-responsive poly(ethylene glycol)-poly(amino acid)s nanogels as efficient intracellular drug delivery platforms. <i>Polymer Chemistry</i> , 2011 , 2, 2857	4.9	195
208	Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11383		125
207	Synthesis of amphiphilic alternating polyesters with oligo(ethylene glycol) side chains and potential use for sustained release drug delivery. <i>Biomacromolecules</i> , 2011 , 12, 2466-74	6.9	55
206	Layer-by-layer assembly of poly(L-glutamic acid)/chitosan microcapsules for high loading and sustained release of 5-fluorouracil. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2011 , 78, 336-45	5.7	77
205	Co-electrospun blends of PLGA, gelatin, and elastin as potential nonthrombogenic scaffolds for vascular tissue engineering. <i>Biomacromolecules</i> , 2011 , 12, 399-408	6.9	107
204	Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery. <i>Journal of Controlled Release</i> , 2011 , 155, 3-10	11.7	96
203	RGD targeting hyaluronic acid coating system for PEI-PBLG polycation gene carriers. <i>Journal of Controlled Release</i> , 2011 , 155, 47-53	11.7	115
202	Biodegradable mPEG-b-P(MCC-g-OEI) copolymers for efficient gene delivery. <i>Journal of Controlled Release</i> , 2011 , 152, 135-42	11.7	55
201	Novel cell-specific and pH-sensitive non-viral gene carrier system. Preface. <i>Journal of Controlled Release</i> , 2011 , 155, 1	11.7	1
200	Preparation of novel biodegradable ternary copolymers mPEG-b-P(MCC-g-OEI) and their gene delivery. <i>Journal of Controlled Release</i> , 2011 , 152 Suppl 1, e139-40	11.7	1
199	Synthesis of oligoethylenimine grafted net-poly(amino ester) and their application in gene delivery. Journal of Controlled Release, 2011 , 152 Suppl 1, e176-7	11.7	2
198	An efficient pH sensitive oral insulin delivery system enhanced by deoxycholic acid. <i>Journal of Controlled Release</i> , 2011 , 152 Suppl 1, e184-6	11.7	14
197	pH and dual redox responsive nanogel based on poly(l-glutamic acid) as potential intracellular drug carrier. <i>Journal of Controlled Release</i> , 2011 , 152 Suppl 1, e11-3	11.7	31
196	Water-catalyzed racemisation of lactide. <i>Polymer Degradation and Stability</i> , 2011 , 96, 1745-1750	4.7	16
195	Determination of D-lactide content in purified L-lactide using gas chromatography-high performance liquid chromatography. <i>Polymer Testing</i> , 2011 , 30, 876-880	4.5	5
194	RGD-conjugated copolymer incorporated into composite of poly(lactide-co-glycotide) and poly(L-lactide)-grafted nanohydroxyapatite for bone tissue engineering. <i>Biomacromolecules</i> , 2011 , 12, 2667-80	6.9	101
193	The crystallization behavior of poly(ethylene glycol)-poly(Ecaprolactone) diblock copolymers with asymmetric block compositions. <i>Journal of Polymer Research</i> , 2011 , 18, 2161-2168	2.7	28

(2011-2011)

192	Facile synthesis of thermo- and pH-responsive biodegradable microgels. <i>Colloid and Polymer Science</i> , 2011 , 289, 447-451	2.4	25	
191	ABA2-type triblock copolymer composed of PCL and PSt: synthesis and characterization. <i>Polymer Bulletin</i> , 2011 , 67, 1507-1518	2.4	5	
190	Morphologies and structures in poly(l-lactide-b-ethylene oxide) copolymers determined by crystallization, microphase separation, and vitrification. <i>Polymer Bulletin</i> , 2011 , 67, 885-902	2.4	19	
189	Mechanical and thermal properties of polypeptide modified hydroxyapatite/poly(L-lactide) nanocomposites. <i>Science China Chemistry</i> , 2011 , 54, 431-437	7.9	13	
188	Poly(L-glutamic acid) grafted with oligo(2-(2-(2-methoxyethoxy)ethoxy)ethyl methacrylate): Thermal phase transition, secondary structure, and self-assembly. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 2665-2676	2.5	69	
187	Biodegradable thermo- and pH-responsive hydrogels for oral drug delivery. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 2941-2951	2.5	27	
186	Thermal and pH responsive high molecular weight poly(urethane-amine) with high urethane content. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 5162-5168	2.5	26	
185	Synthesis and characterization of amphiphilic block polymers with amino groups and their conjugates with folic acid and fluorescent probes. <i>Polymer International</i> , 2011 , 60, 1269-1276	3.3	4	
184	Highly efficient "grafting from" an Ehelical polypeptide backbone by atom transfer radical polymerization. <i>Macromolecular Bioscience</i> , 2011 , 11, 192-8	5.5	66	
183	Hydrophobic polyphenylalanine-grafted hyperbranched polyethylenimine and its in vitro gene transfection. <i>Macromolecular Bioscience</i> , 2011 , 11, 211-8	5.5	33	
182	Porous scaffolds based on cross-linking of poly(L-glutamic acid). <i>Macromolecular Bioscience</i> , 2011 , 11, 427-34	5.5	31	
181	Preparation and characterization of biodegradable and electroactive polymer blend materials based on mPEG/tetraaniline and PLLA. <i>Macromolecular Bioscience</i> , 2011 , 11, 806-13	5.5	47	
180	A poly(acrylic acid)-block-poly(L-glutamic acid) diblock copolymer with improved cell adhesion for surface modification. <i>Macromolecular Bioscience</i> , 2011 , 11, 970-7	5.5	14	
179	Layer-by-layer assembled multilayer films of methoxypoly(ethylene glycol)-block-poly(月-glutamic acid) and chitosan with reduced cell adhesion. <i>Macromolecular Bioscience</i> , 2011 , 11, 1211-7	5.5	9	
178	Novel physically crosslinked hydrogels of carboxymethyl chitosan and cellulose ethers: Structure and controlled drug release behavior. <i>Journal of Applied Polymer Science</i> , 2011 , 119, 2350-2358	2.9	11	
177	Crystallization behavior of biodegradable poly(L-lactic acid) filled with a powerful nucleating agent: N,N?-bis(benzoyl) suberic acid dihydrazide. <i>Journal of Applied Polymer Science</i> , 2011 , 121, 1408-1416	2.9	59	
176	Zinc-based catalyst for the ring-opening polymerization of cyclic esters. <i>Journal of Applied Polymer Science</i> , 2011 , 121, 2378-2385	2.9	10	
175	Oligoethylenimines grafted to PEGylated poly(\textbf{b}mino ester)s for gene delivery. Biomacromolecules, 2011, 12, 1024-31	6.9	16	

174	Apatite-forming ability of bioactive poly(l-lactic acid)/grafted silica nanocomposites in simulated body fluid. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 86, 218-24	6	28
173	Synthesis of temperature and pH-responsive crosslinked micelles from polypeptide-based graft copolymer. <i>Journal of Colloid and Interface Science</i> , 2011 , 359, 436-42	9.3	22
172	Thermo- and pH-responsive HPC-g-AA/AA hydrogels for controlled drug delivery applications. <i>Polymer</i> , 2011 , 52, 676-682	3.9	74
171	Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery. <i>Nanotechnology</i> , 2011 , 22, 494012	3.4	57
170	SYNTHESIS AND SWELLING BEHAVIOR OF DEGRADABLE pH-SENSITIVE HYDROGELS COMPOSED OF POLY(L-GLUTAMIC ACID) AND POLY(ACRYLIC ACID). <i>Acta Polymerica Sinica</i> , 2011 , 011, 883-888		10
169	SYNTHESIS AND CHARACTERIZATION OF GENIPIN CROSS-LINKED OLIGOETHYLENIMINE FOR GENE DELIVERY. <i>Acta Polymerica Sinica</i> , 2011 , 011, 1086-1091		4
168	Facile Synthesis of Hydroxyl-Ended, Highly Stereoregular, Star-Shaped Poly(lactide) from Immortal ROP of rac-Lactide and Kinetics Study. <i>Macromolecules</i> , 2010 , 43, 6678-6684	5.5	80
167	Biodegradable block copolymer-doxorubicin conjugates via different linkages: preparation, characterization, and in vitro evaluation. <i>Biomacromolecules</i> , 2010 , 11, 2094-102	6.9	141
166	Polylactic acid (PLA): research, development and industrialization. <i>Biotechnology Journal</i> , 2010 , 5, 1125	-36 6	213
165	Synthesis and characterization of a pH-sensitive shielding system for polycation gene carriers. <i>Science China Chemistry</i> , 2010 , 53, 502-507	7.9	25
164	Bioreducible crosslinked low molecular weight branched PEI-PBLG as an efficient gene carrier. <i>Science China Chemistry</i> , 2010 , 53, 2490-2496	7.9	7
163	Fabrication and Drug Delivery of Ultrathin Mesoporous Bioactive Glass Hollow Fibers. <i>Advanced Functional Materials</i> , 2010 , 20, 1503-1510	15.6	116
162	Preparation, bioactivity, and drug release of hierarchical nanoporous bioactive glass ultrathin fibers. <i>Advanced Materials</i> , 2010 , 22, 754-8	24	102
161	Compatibilizing effect of starch-grafted-poly(L-lactide) on the poly(Etaprolactone)/starch composites. <i>Journal of Applied Polymer Science</i> , 2010 , 117, n/a-n/a	2.9	3
160	Application of the biodegradable diblock copolymer poly(L-lactide)-block-poly(L-cysteine): Drug delivery and protein conjugation. <i>Journal of Applied Polymer Science</i> , 2010 , 118, n/a-n/a	2.9	1
159	Synthesis and Electrochemistry of Schiff Base Cobalt(III) Complexes and Their Catalytic Activity for Copolymerization of Epoxide and Carbon Dioxide. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 66	9 ⁻² 676	19
158	Facile Synthesis of Glycopolypeptides by Combination of Ring-Opening Polymerization of an Alkyne-Substituted N-carboxyanhydride and Click "Glycosylation". <i>Macromolecular Rapid Communications</i> , 2010 , 31, 991-7	4.8	142
157	Multi-armed poly(L-glutamic acid)-graft-oligoethylenimine copolymers as efficient nonviral gene delivery vectors. <i>Journal of Gene Medicine</i> , 2010 , 12, 64-76	3.5	46

(2009-2010)

156	Biodegradable and electroactive TEMPO-substituted acrylamide/lactide copolymers. <i>Macromolecular Bioscience</i> , 2010 , 10, 1203-9	5.5	18	
155	pH-dependent self-assembly of amphiphilic poly(l-glutamic acid)-block-poly(lactic-co-glycolic acid) copolymers. <i>Polymer</i> , 2010 , 51, 2676-2682	3.9	22	
154	Lactose mediated liver-targeting effect observed by ex vivo imaging technology. <i>Biomaterials</i> , 2010 , 31, 2646-54	15.6	80	
153	Synthesis of amphiphilic block copolymers bearing stable nitroxyl radicals. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 5404-5410	2.5	27	
152	SYNTHESIS AND CHARACTERIZATION OF ELECTROACTIVE GRAFT COPOLYMER OF POLY(L-GLUTAMIC ACID)-g-ANILINE TETRAMER. <i>Acta Polymerica Sinica</i> , 2010 , 010, 956-960		5	
151	A Novel Biodegradable and Light-Breakable Diblock Copolymer Micelle for Drug Delivery. <i>Advanced Engineering Materials</i> , 2009 , 11, B7-B11	3.5	15	
150	Chiral salan aluminium ethyl complexes and their application in lactide polymerization. <i>Chemistry - A European Journal</i> , 2009 , 15, 9836-45	4.8	155	
149	Electrospinning of multicomponent ultrathin fibrous nonwovens for semi-occlusive wound dressings. <i>Journal of Biomedical Materials Research - Part A</i> , 2009 , 89, 345-54	5.4	26	
148	Alternating Copolymerization of Carbon Dioxide and Propylene Oxide Catalyzed by Cobalt Schiff Base Complex. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 1224-1229	2.6	33	
147	Layer-by-layer buildup of poly(L-glutamic acid)/chitosan film for biologically active coating. <i>Macromolecular Bioscience</i> , 2009 , 9, 268-78	5.5	63	
146	The surface modification of hydroxyapatite nanoparticles by the ring opening polymerization of gamma-benzyl-l-glutamate N-carboxyanhydride. <i>Macromolecular Bioscience</i> , 2009 , 9, 631-8	5.5	56	
145	A highly efficient siRNA carrier of PBLG modified hyperbranched PEI. <i>Macromolecular Bioscience</i> , 2009 , 9, 1247-53	5.5	30	
144	Surface modification of hydroxyapatite nanoparticles with thermal-responsive PNIPAM by ATRP. <i>Macromolecular Bioscience</i> , 2009 , 9, 1237-46	5.5	40	
143	Synthesis and self-assembly of a novel Y-shaped copolymer with a helical polypeptide arm. <i>Polymer</i> , 2009 , 50, 455-461	3.9	27	
142	Recent developments in intelligent biomedical polymers. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 117-130		14	
141	Cytotoxicity of liver targeted drug-loaded alginate nanoparticles. <i>Science in China Series B:</i> Chemistry, 2009 , 52, 1382-1387		20	
140	PLLA-PCys co-electrospun fibers for capture and elution of glutathione S-transferase. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 2033-2037		6	
139	Glycyrrhetinic acid-modified nanoparticles for drug delivery: Preparation and characterization. <i>Science Bulletin</i> , 2009 , 54, 3121-3126		19	

SYNTHESIS AND CHARACTERIZATION OF A CROSSLINKING POLYETHYLENIMINE AS SMART GENE

CARRIER AND EFFECTS OF PEGYLATION DEGREE. Acta Polymerica Sinica, 2009, 009, 499-505

5.5

43

8

Macromolecules, 2009, 42, 9251-9254

122

121

(2008-2008)

120	Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications. <i>Biomacromolecules</i> , 2008 , 9, 850-8	6.9	235
119	Amphiphilic core-shell nanocarriers based on hyperbranched poly(ester amide)-star-PCL: synthesis, characterization, and potential as efficient phase transfer agent. <i>Biomacromolecules</i> , 2008 , 9, 2629-36	6.9	47
118	Formation of reversible shell cross-linked micelles from the biodegradable amphiphilic diblock copolymer poly(L-cysteine)-block-poly(L-lactide). <i>Langmuir</i> , 2008 , 24, 10099-106	4	74
117	Biodegradable amphiphilic block copolymers bearing protected hydroxyl groups: synthesis and characterization. <i>Biomacromolecules</i> , 2008 , 9, 553-60	6.9	69
116	The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2008 , 70, 165-70	5.7	176
115	The immobilization of proteins on biodegradable fibers via biotin-streptavidin bridges. <i>Acta Biomaterialia</i> , 2008 , 4, 1770-7	10.8	28
114	Crown-like macrocycle zinc complex derived from the diketone ligand for the polymerization of rac-lactide. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 643-649	2.5	31
113	Synthesis and characterization of novel biodegradable poly(carbonate ester)s with photolabile protecting groups. <i>Biomacromolecules</i> , 2008 , 9, 376-80	6.9	55
112	pH/potential-responsive large aggregates from the spontaneous self-assembly of a triblock copolymer in water. <i>Langmuir</i> , 2008 , 24, 13376-82	4	20
111	Biodegradable interpolyelectrolyte complexes based on methoxy poly(ethylene glycol)-b-poly(alpha,L-glutamic acid) and chitosan. <i>Biomacromolecules</i> , 2008 , 9, 2653-61	6.9	42
110	Electroactive aniline pentamer cross-linking chitosan for stimulation growth of electrically sensitive cells. <i>Biomacromolecules</i> , 2008 , 9, 2637-44	6.9	75
109	The immobilization of proteins on biodegradable polymer fibers via click chemistry. <i>Biomaterials</i> , 2008 , 29, 1118-26	15.6	101
108	A new oxidation state of aniline pentamer observed in water-soluble electroactive oligoaniline-chitosan polymer. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 1124-1135	2.5	24
107	Novel aliphatic poly(ester-carbonate) with pendant allyl ester groups and its folic acid functionalization. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 1852-1861	2.5	48
106	Novel temperature- and pH-responsive graft copolymers composed of poly(L-glutamic acid) and poly(N-isopropylacrylamide). <i>Journal of Polymer Science Part A</i> , 2008 , 46, 4140-4150	2.5	55
105	Regio-regular structure high molecular weight poly(propylene carbonate) by rare earth ternary catalyst and Lewis base cocatalyst. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 4451-4458	2.5	25
104	Aliphatic poly(ester-carbonate)s bearing amino groups and its RGD peptide grafting. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 7022-7032	2.5	44
103	Crystallization and morphology of poly(ethylene oxide-b-lactide) crystalline@rystalline diblock copolymers. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2008 , 46, 1400-1411	2.6	52

102	Self-Assembly of a Hydrophobic Polypeptide Containing a Short Hydrophilic Middle Segment: Vesicles to Large Compound Micelles. <i>Macromolecular Chemistry and Physics</i> , 2008 , 209, 1129-1136	2.6	25
101	Novel pH- and Temperature-Responsive Block Copolymers with Tunable pH-Responsive Range. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 490-497	4.8	66
100	BandglassEshaped Self-Assembly of CoilEodEoil Triblock Copolymer Containing Rigid Aniline-Pentamer. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1242-1247	4.8	13
99	Synthesis of Novel Thermo- and pH-Responsive Poly(L-lysine)-Based Copolymer and its Micellization in Water. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1810-1816	4.8	47
98	Grafting BSA onto poly[(L-lactide)-co-carbonate] microspheres by click chemistry. <i>Macromolecular Bioscience</i> , 2008 , 8, 638-44	5.5	21
97	Enolic schiff base aluminum complexes and their catalytic stereoselective polymerization of racemic lactide. <i>Chemistry - A European Journal</i> , 2008 , 14, 3126-36	4.8	119
96	Fabrication and characterization of CdTe nanoparticles attached to poly(4-vinylpyridine) nanofibers. <i>Journal of Applied Polymer Science</i> , 2008 , 108, 281-286	2.9	2
95	Synthesis and characterization of starch piperinic ester and its self-assembly of nanospheres. Journal of Applied Polymer Science, 2008 , 108, 523-528	2.9	16
94	Gelatin multilayers assembled on poly(L-lactic acid) surface for better cytocompatibility. <i>Journal of Applied Polymer Science</i> , 2008 , 109, 530-536	2.9	7
93	A biodegradable diblcok copolymer poly(ethylene glycol)-block-poly(L-lactide-co-2-methyl-2-carboxyl-propylene carbonate): Docetaxel and RGD conjugation. <i>Journal of Applied Polymer Science</i> , 2008 , 110, 2961-2970	2.9	24
92	Linear poly(ethylenimine)-graft-poly(ethylene glycol) copolymers: their micellization and secondary assembly. <i>Journal of Colloid and Interface Science</i> , 2008 , 320, 62-9	9.3	11
91	Stabilization of poly(lactic acid) by polycarbodiimide. <i>Polymer Degradation and Stability</i> , 2008 , 93, 1923-	-1 <u>.9.7</u> 9	49
90	Controlled release of urea encapsulated by starch-g-poly(l-lactide). <i>Carbohydrate Polymers</i> , 2008 , 72, 342-348	10.3	110
89	Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites. <i>Acta Biomaterialia</i> , 2008 , 4, 1005-15	10.8	103
88	Study of temperature dependence of crystallisation transitions of a symmetric PEO-PCL diblock copolymer using simultaneous SAXS and WAXS measurements with synchrotron radiation. <i>European Physical Journal E</i> , 2008 , 27, 357-64	1.5	20
87	Direct formation of giant vesicles from synthetic polypeptides. <i>Langmuir</i> , 2007 , 23, 8308-15	4	98
86	Single Crystals of the Poly(l-lactide) Block and the Poly(ethylene glycol) Block in Poly(l-lactide) poly(ethylene glycol) Diblock Copolymer. <i>Macromolecules</i> , 2007 , 40, 2791-2797	5.5	51
85	Poly(L-lysine)-graft-chitosan copolymers: synthesis, characterization, and gene transfection effect. <i>Biomacromolecules</i> , 2007 , 8, 1425-35	6.9	102

(2007-2007)

84	Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. <i>Journal of Applied Polymer Science</i> , 2007 , 103, 125-133	2.9	177
83	Biodegradable polyurethane based on random copolymer of L-lactide and ?-caprolactone and its shape-memory property. <i>Journal of Applied Polymer Science</i> , 2007 , 104, 4182-4187	2.9	34
82	Triblock poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid)/paclitaxel conjugates: Synthesis, micellization, and cytotoxicity. <i>Journal of Applied Polymer Science</i> , 2007 , 105, 2271-2279	2.9	36
81	Composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles. <i>Journal of Biomedical Materials Research - Part A</i> , 2007 , 81, 515-22	5.4	72
80	Synthesis of a Novel Electroactive ABA Triblock Copolymer and its Spontaneous Self-Assembly in Water. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 1559-1566	4.8	34
79	Gene transfection of hyperbranched PEI grafted by hydrophobic amino acid segment PBLG. <i>Biomaterials</i> , 2007 , 28, 2899-907	15.6	171
78	Synthesis and crystallization behaviors of poly(styrene-b-isoprene-b-Etaprolactone) triblock copolymers. <i>European Polymer Journal</i> , 2007 , 43, 1905-1915	5.2	9
77	Electrospun poly(l-lactide)-grafted hydroxyapatite/poly(l-lactide) nanocomposite fibers. <i>European Polymer Journal</i> , 2007 , 43, 3187-3196	5.2	101
76	A biodegradable triblock copolymer poly(ethylene glycol)-b-poly(l-lactide)-b-poly(l-lysine): Synthesis, self-assembly, and RGD peptide modification. <i>Polymer</i> , 2007 , 48, 139-149	3.9	111
75	Enolic Schiff-base aluminum complexes and their application in lactide polymerization. <i>Journal of Organometallic Chemistry</i> , 2007 , 692, 5605-5613	2.3	38
74	Synthesis and characterization of novel poly(ester carbonate)s based on pentaerythritol. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 1737-1745	2.5	33
73	Sugars-grafted aliphatic biodegradable poly(L-lactide-co-carbonate)s by click reaction and their specific interaction with lectin molecules. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 3204-3217	2.5	68
72	RGD peptide grafted biodegradable amphiphilic triblock copolymer poly(glutamic acid)-b-poly(L-lactide)-b-poly(glutamic acid): Synthesis and self-assembly. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 3218-3230	2.5	45
71	Alternating copolymerization of carbon dioxide and propylene oxide catalyzed by (R, R)-SalenCoIII-(2,4-dinitrophenoxy) and Lewis-basic cocatalyst. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 5050-5056	2.5	45
70	Synthesis and characterization of amphiphilic block copolymers with allyl side-groups. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 5518-5528	2.5	56
69	The influence of hard-segments on two-phase structure and shape memory properties of PCL-based segmented polyurethanes. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2007 , 45, 557	-370	81
68	Shape memory effect of poly(L-lactide)- based polyurethanes with different hard segments. <i>Polymer International</i> , 2007 , 56, 840-846	3.3	43
67	Polyelectrolyte complexes based on chitosan and poly(L-glutamic acid). <i>Polymer International</i> , 2007 , 56, 1122-1127	3.3	30

66	Structural characteristics and thermal properties of plasticized poly(l-lactide)-silica nanocomposites synthesized by solgel method. <i>Materials Letters</i> , 2007 , 61, 2683-2686	3.3	58
65	Enantiomeric PLA P EG block copolymers and their stereocomplex micelles used as rifampin delivery. <i>Journal of Nanoparticle Research</i> , 2007 , 9, 777-785	2.3	100
64	Preparation of nano-hydroxyapatite/poly(l-lactide) biocomposite microspheres. <i>Journal of Nanoparticle Research</i> , 2007 , 9, 901-908	2.3	31
63	Shape-memory and biocompatibility properties of segmented polyurethanes based on poly(L-lactide). Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2007, 2, 331-336		7
62	Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. <i>Biomaterials</i> , 2007 , 28, 1741-51	15.6	234
61	Surface-grafted silica linked with l-lactic acid oligomer: A novel nanofiller to improve the performance of biodegradable poly(l-lactide). <i>Polymer</i> , 2007 , 48, 1688-1694	3.9	137
60	Biodegradable poly(l-lactide)/poly(e-caprolactone)-modified montmorillonite nanocomposites: Preparation and characterization. <i>Polymer</i> , 2007 , 48, 6439-6447	3.9	97
59	Self-assembly of a polymer pair through poly(lactide) stereocomplexation. <i>Nanotechnology</i> , 2007 , 18, 185607	3.4	6
58	Self-assembly of polypeptide-containing ABC-type triblock copolymers in aqueous solution and its pH dependence. <i>Biomacromolecules</i> , 2007 , 8, 1013-7	6.9	47
57	Achiral Lanthanide Alkyl Complexes Bearing N,O Multidentate Ligands. Synthesis and Catalysis of Highly Heteroselective Ring-Opening Polymerization of rac-Lactide. <i>Organometallics</i> , 2007 , 26, 2747-27	² 57 ⁸	258
56	Electroactive oligoaniline-containing self-assembled monolayers for tissue engineering applications. <i>Biomacromolecules</i> , 2007 , 8, 3025-34	6.9	98
55	Polymerization ofrac-Lactide Using Schiff Base Aluminum Catalysts: Structure, Activity, and Stereoselectivity. <i>Macromolecules</i> , 2007 , 40, 1904-1913	5.5	158
54	Pyrrolide-Ligated Organoyttrium Complexes. Synthesis, Characterization, and Lactide Polymerization Behavior. <i>Organometallics</i> , 2007 , 26, 671-678	3.8	104
53	BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells. <i>Journal of Controlled Release</i> , 2006 , 114, 307-16	11.7	136
52	Micellization and reversible pH-sensitive phase transfer of the hyperbranched multiarm PEI-PBLG Copolymer. <i>Chemistry - A European Journal</i> , 2006 , 12, 4305-12	4.8	82
51	Medicated wound dressings based on poly(vinyl alcohol)/poly(N-vinyl pyrrolidone)/chitosan hydrogels. <i>Journal of Applied Polymer Science</i> , 2006 , 101, 2453-2463	2.9	57
50	Synthesis and characterization of poly(?-caprolactone)poly(L-lactide) diblock copolymers with an organic amino calcium catalyst. <i>Journal of Applied Polymer Science</i> , 2006 , 102, 2654-2660	2.9	22
49	Preparation of Core-Sheath Composite Nanofibers by Emulsion Electrospinning. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 1637-1642	4.8	247

(2005-2006)

48	Polypeptide Modification of Multiwalled Carbon Nanotubes by a Graft-From Approach. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 2019-2025	4.8	43
47	Formation of a unique crystal morphology for the poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymer. <i>Biomacromolecules</i> , 2006 , 7, 252-8	6.9	88
46	Composition dependence of the crystallization behavior and morphology of the poly(ethylene oxide)-poly(epsilon-caprolactone) diblock copolymer. <i>Biomacromolecules</i> , 2006 , 7, 3482-9	6.9	78
45	Biodegradable amphiphilic triblock copolymer bearing pendant glucose residues: preparation and specific interaction with Concanavalin A molecules. <i>Biomacromolecules</i> , 2006 , 7, 1806-10	6.9	27
44	Morphology and Structure of Single Crystals of Poly(ethylene glycol) P oly(Etaprolactone) Diblock Copolymers. <i>Macromolecules</i> , 2006 , 39, 3717-3719	5.5	68
43	Synthesis and characterization of RGD peptide grafted poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-glutamic acid) triblock copolymer. <i>Biomacromolecules</i> , 2006 , 7, 590-6	6.9	125
42	Five-coordinated active species in the stereoselective polymerization of rac-lactide using N,N?-(2,2-dimethyl-1,3-propylene) bis(3,5-di-tert-butyl-salicylideneimine) aluminum complexes. Journal of Polymer Science Part A, 2006, 44, 4932-4938	2.5	19
41	Synthesis and characterization of a novel biodegradable, thermoplastic polyurethane elastomer. Journal of Polymer Science Part A, 2006 , 44, 5505-5512	2.5	50
40	Nonisothermal crystallization behavior of the poly(ethylene glycol) block in poly(L-lactide)poly(ethylene glycol) diblock copolymers: Effect of the poly(L-lactide) block length. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2006 , 44, 3215-3226	2.6	53
39	Poly(l-lactide)/starch blends compatibilized with poly(l-lactide)-g-starch copolymer. <i>Carbohydrate Polymers</i> , 2006 , 65, 75-80	10.3	93
38	Surface modification of poly(L-lactic acid) to improve its cytocompatibility via assembly of polyelectrolytes and gelatin. <i>Acta Biomaterialia</i> , 2006 , 2, 155-64	10.8	76
37	Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles. <i>European Polymer Journal</i> , 2006 , 42, 2081-2087	5.2	310
36	Isothermal Crystallization Behavior of the Poly(L-lactide) Block in Poly(L-lactide)-Poly(ethylene glycol) Diblock Copolymers: Influence of the PEG Block as a Diluted Solvent. <i>Polymer Journal</i> , 2006 , 38, 1251-1257	2.7	23
35	Formation of flower- or cake-shaped stereocomplex particles from the stereo multiblock copoly(rac-lactide)s. <i>Biomacromolecules</i> , 2005 , 6, 2843-50	6.9	39
34	Synthesis and characterization of poly(ethylene glycol)-b-poly (l-lactide)-b-poly(l-glutamic acid) triblock copolymer. <i>Polymer</i> , 2005 , 46, 653-659	3.9	87
33	Preparation of block copolymer of e-caprolactone and 2-methyl-2-carboxyl-propylene carbonate. <i>Polymer</i> , 2005 , 46, 2817-2824	3.9	44
32	The starch grafted poly(l-lactide) and the physical properties of its blending composites. <i>Polymer</i> , 2005 , 46, 5723-5729	3.9	83
31	Novel biodegradable poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate) copolymers: Synthesis, characterization, and micellization. <i>Polymer</i> , 2005 , 46, 10523-10530	3.9	30

30	A novel approach to grafting polymerization of Etaprolactone onto starch granules. <i>Carbohydrate Polymers</i> , 2005 , 60, 103-109	10.3	76
29	Synthesis and characterization of the paclitaxel/MPEG-PLA block copolymer conjugate. <i>Biomaterials</i> , 2005 , 26, 2121-8	15.6	139
28	Biodegradable cationic PEG-PEI-PBLG hyperbranched block copolymer: synthesis and micelle characterization. <i>Biomaterials</i> , 2005 , 26, 4209-17	15.6	202
27	Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. <i>Journal of Controlled Release</i> , 2005 , 105, 43-51	11.7	383
26	Controlled and stereospecific polymerization of rac-lactide with a single-site ethyl aluminum and alcohol initiating system. <i>Journal of Applied Polymer Science</i> , 2005 , 98, 102-108	2.9	45
25	Effects of stereo-regularity of multiblock co-poly(rac-lactide)s on stereo-complex microparticles and their insulin delivery. <i>Macromolecular Bioscience</i> , 2005 , 5, 1193-9	5.5	9
24	Synthesis and characterization of novel biotinylated biodegradable poly(ethylene glycol)-b-poly(carbonate-lactic acid) copolymers. <i>Acta Biomaterialia</i> , 2005 , 1, 635-41	10.8	24
23	Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. <i>Biomaterials</i> , 2005 , 26, 6296-304	15.6	369
22	Surface-modified hydroxyapatite linked by L-lactic acid oligomer in the absence of catalyst. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 5177-5185	2.5	58
21	Aluminum Schiff base catalysts derived from	2.5	40
20	Stereoselective polymerization of rac-lactide using a monoethylaluminum Schiff base complex. <i>Biomacromolecules</i> , 2004 , 5, 965-70	6.9	197
19	Probing the micellization of diblock and triblock copolymers of poly(l-lactide) and poly(ethylene glycol) in aqueous and NaCl salt solutions. <i>Colloid and Polymer Science</i> , 2004 , 282, 343-350	2.4	38
18	Grafting polymerization of l-lactide on the surface of hydroxyapatite nano-crystals. <i>Polymer</i> , 2004 , 45, 6699-6706	3.9	199
17	Synthesis of four-armed poly(Laprolactone)-block-poly(ethylene oxide) by diethylzinc catalyst. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 950-959	2.5	33
16	Stereoselective polymerization of rac-lactide with a bulky aluminum/Schiff base complex. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 5974-5982	2.5	81
15	Crystallization and Ring-Banded Spherulite Morphology of Poly(ethylene oxide)-block-Poly(Eaprolactone) Diblock Copolymer. <i>Macromolecular Chemistry and Physics</i> , 2004 , 205, 2229-2234	2.6	54
14	Synthesis of a novel structural triblock copolymer of poly(gamma -benzyl-l-glutamic acid)-b-poly(ethylene oxide)-b-poly(epsilon-caprolactone). <i>Biomaterials</i> , 2004 , 25, 3553-8	15.6	51
13	Study on crystalline morphology of poly(l-lactide)-poly(ethylene glycol) diblock copolymer. <i>Polymer</i> , 2004 , 45, 5969-5977	3.9	104

LIST OF PUBLICATIONS

12	glycol)-poly(epsilon-caprolactone) diblock copolymers. <i>Biomacromolecules</i> , 2004 , 5, 2042-7	6.9	124	
11	Biodegradable electrospun fibers for drug delivery. <i>Journal of Controlled Release</i> , 2003 , 92, 227-31	11.7	697	
10	Ultrafine fibers electrospun from biodegradable polymers. <i>Journal of Applied Polymer Science</i> , 2003 , 89, 1085-1092	2.9	121	
9	Strontium-based initiator system for ring-opening polymerization of cyclic esters. <i>Journal of Polymer Science Part A</i> , 2003 , 41, 1934-1941	2.5	54	
8	Synthesis and characterization of PCL/PEG/PCL triblock copolymers by using calcium catalyst. <i>Polymer</i> , 2003 , 44, 2025-2031	3.9	157	
7	Synthesis of poly(epsilon-caprolactone)-b-poly(gamma-benzyl-L-glutamic acid) block copolymer using amino organic calcium catalyst. <i>Biomacromolecules</i> , 2003 , 4, 1800-4	6.9	72	
6	Synthesis and characterization of poly(#hydroxybutyrate) and poly(?-caprolactone) copolyester by transesterification. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2002 , 40, 1893-1903	2.6	18	
5	Thermal Properties and Structural Evolution of Poly(l-lactide)/Poly(d-lactide) Blends. <i>Macromolecules</i> ,	5.5	9	
4	Surface Modification of Hydroxyapatite for Bone Tissue Engineering61-82			
3	One-Pot Synthesis of Supertough, Sustainable Polyester Thermoplastic Elastomers Using Block-Like, Gradient Copolymer as Soft Midblock. <i>CCS Chemistry</i> ,1522-1531	7.2	4	
2	Trinity immune enhancing nanoparticles for boosting antitumor immune responses of immunogenic chemotherapy. <i>Nano Research</i> ,1	10	1	
1	Unity Makes Strength: Constructing Polymeric Catalyst for Selective Synthesis of CO 2 /Epoxide Copolymer. <i>CCS Chemistry</i> ,1-26	7.2	О	