Xuesi Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8877004/publications.pdf

Version: 2024-02-01

803 papers 49,124 citations

110 h-index 165 g-index

820 all docs 820 does citations

times ranked

820

36413 citing authors

#	Article	IF	CITATIONS
1	Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progress in Polymer Science, 2012, 37, 237-280.	11.8	1,103
2	Biodegradable electrospun fibers for drug delivery. Journal of Controlled Release, 2003, 92, 227-231.	4.8	758
3	Antibacterial Hydrogels. Advanced Science, 2018, 5, 1700527.	5.6	696
4	Electrospun polymer biomaterials. Progress in Polymer Science, 2019, 90, 1-34.	11.8	472
5	Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. Journal of Controlled Release, 2005, 105, 43-51.	4.8	428
6	Nano-composite of poly(-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility. Biomaterials, 2005, 26, 6296-6304.	5.7	410
7	Sequentially Responsive Shellâ€Stacked Nanoparticles for Deep Penetration into Solid Tumors. Advanced Materials, 2017, 29, 1701170.	11.1	360
8	Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles. European Polymer Journal, 2006, 42, 2081-2087.	2.6	348
9	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	4.2	336
10	Engineered nanomedicines with enhanced tumor penetration. Nano Today, 2019, 29, 100800.	6.2	317
11	Stimuliâ€Sensitive Synthetic Polypeptideâ€Based Materials for Drug and Gene Delivery. Advanced Healthcare Materials, 2012, 1, 48-78.	3.9	307
12	Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Advanced Drug Delivery Reviews, 2017, 115, 115-154.	6.6	307
13	Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials, 2014, 35, 6118-6129.	5.7	304
14	Polylactic acid (PLA): Research, development and industrialization. Biotechnology Journal, 2010, 5, 1125-1136.	1.8	291
15	Reactive Oxygen Species (ROS) Responsive Polymers for Biomedical Applications. Macromolecular Bioscience, 2016, 16, 635-646.	2.1	282
16	Achiral Lanthanide Alkyl Complexes Bearing N,O Multidentate Ligands. Synthesis and Catalysis of Highly Heteroselective Ring-Opening Polymerization ofrac-Lactide. Organometallics, 2007, 26, 2747-2757.	1.1	278
17	Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nature Chemical Biology, 2017, 13, 415-424.	3.9	274
18	Preparation of Core-Sheath Composite Nanofibers by Emulsion Electrospinning. Macromolecular Rapid Communications, 2006, 27, 1637-1642.	2.0	271

#	Article	IF	CITATIONS
19	Polymeric nanostructured materials for biomedical applications. Progress in Polymer Science, 2016, 60, 86-128.	11.8	257
20	Synthesis of Biodegradable and Electroactive Multiblock Polylactide and Aniline Pentamer Copolymer for Tissue Engineering Applications. Biomacromolecules, 2008, 9, 850-858.	2.6	255
21	Immunomodulatory Nanosystems. Advanced Science, 2019, 6, 1900101.	5.6	255
22	Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. Journal of Controlled Release, 2019, 302, 19-41.	4.8	254
23	Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. Biomaterials, 2007, 28, 1741-1751.	5.7	252
24	A Tumorâ€Microenvironmentâ€Activated Nanozymeâ€Mediated Theranostic Nanoreactor for Imagingâ€Guided Combined Tumor Therapy. Advanced Materials, 2019, 31, e1902885.	11.1	246
25	In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(l-lactide). Biomaterials, 2009, 30, 58-70.	5.7	245
26	Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. Biomaterials, 2014, 35, 3851-3864.	5.7	244
27	High Drug Loading and Sub-Quantitative Loading Efficiency of Polymeric Micelles Driven by Donor–Receptor Coordination Interactions. Journal of the American Chemical Society, 2018, 140, 1235-1238.	6.6	236
28	Injectable Bioresponsive Gel Depot for Enhanced Immune Checkpoint Blockade. Advanced Materials, 2018, 30, e1801527.	11.1	233
29	Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering. Biomacromolecules, 2019, 20, 1478-1492.	2.6	233
30	One-step preparation of reduction-responsive poly(ethylene glycol)-poly(amino acid)s nanogels as efficient intracellular drug delivery platforms. Polymer Chemistry, 2011, 2, 2857.	1.9	220
31	Ultrasound-Augmented Mitochondrial Calcium Ion Overload by Calcium Nanomodulator to Induce Immunogenic Cell Death. Nano Letters, 2021, 21, 2088-2093.	4.5	220
32	Injectable glycopolypeptide hydrogels as biomimetic scaffolds forÂcartilage tissue engineering. Biomaterials, 2015, 51, 238-249.	5.7	217
33	Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor. Acta Biomaterialia, 2017, 47, 124-134.	4.1	216
34	Grafting polymerization of l-lactide on the surface of hydroxyapatite nano-crystals. Polymer, 2004, 45, 6699-6706.	1.8	211
35	Stereoselective Polymerization ofrac-Lactide Using a Monoethylaluminum Schiff Base Complex. Biomacromolecules, 2004, 5, 965-970.	2.6	209
36	Production and clinical development of nanoparticles for gene delivery. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16023.	1.8	207

#	Article	IF	CITATIONS
37	Biodegradable cationic PEG–PEI–PBLG hyperbranched block copolymer: synthesis and micelle characterization. Biomaterials, 2005, 26, 4209-4217.	5.7	206
38	Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. Journal of Applied Polymer Science, 2007, 103, 125-133.	1.3	203
39	Green Tea Derivative Driven Smart Hydrogels with Desired Functions for Chronic Diabetic Wound Treatment. Advanced Functional Materials, 2021, 31, 2009442.	7.8	202
40	The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 165-170.	2.0	194
41	Ultrafine PEG–PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 18-25.	2.0	190
42	Nanoscaled Poly(<scp>l</scp> -glutamic acid)/Doxorubicin-Amphiphile Complex as pH-responsive Drug Delivery System for Effective Treatment of Nonsmall Cell Lung Cancer. ACS Applied Materials & Samp; Interfaces, 2013, 5, 1781-1792.	4.0	190
43	Gene transfection of hyperbranched PEI grafted by hydrophobic amino acid segment PBLG. Biomaterials, 2007, 28, 2899-2907.	5.7	186
44	Injectable In Situ Self-Cross-Linking Hydrogels Based on Poly(<scp>I</scp> -glutamic acid) and Alginate for Cartilage Tissue Engineering. Biomacromolecules, 2014, 15, 4495-4508.	2.6	185
45	Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomaterialia, 2013, 9, 9330-9342.	4.1	180
46	Ultrasensitive pH Triggered Charge/Size Dual-Rebound Gene Delivery System. Nano Letters, 2016, 16, 6823-6831.	4.5	179
47	Co-delivery of chemotherapeutics and proteins for synergistic therapy. Advanced Drug Delivery Reviews, 2016, 98, 64-76.	6.6	178
48	A Multichannel Ca ²⁺ Nanomodulator for Multilevel Mitochondrial Destructionâ€Mediated Cancer Therapy. Advanced Materials, 2021, 33, e2007426.	11.1	177
49	Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering. Advanced Functional Materials, 2019, 29, 1903279.	7.8	176
50	Polymerization ofrac-Lactide Using Schiff Base Aluminum Catalysts:Â Structure, Activity, and Stereoselectivity. Macromolecules, 2007, 40, 1904-1913.	2.2	174
51	Nanotherapeutics relieve rheumatoid arthritis. Journal of Controlled Release, 2017, 252, 108-124.	4.8	170
52	Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel. Journal of Controlled Release, 2014, 194, 220-227.	4.8	169
53	Synthesis and characterization of PCL/PEG/PCL triblock copolymers by using calcium catalyst. Polymer, 2003, 44, 2025-2031.	1.8	167
54	Chiral Salan Aluminium Ethyl Complexes and Their Application in Lactide Polymerization. Chemistry - A European Journal, 2009, 15, 9836-9845.	1.7	164

#	Article	IF	CITATIONS
55	Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chemical Communications, 2014, 50, 11274-11290.	2.2	162
56	Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation. Biomaterials, 2020, 230, 119617.	5.7	162
57	Kartogenin-Incorporated Thermogel Supports Stem Cells for Significant Cartilage Regeneration. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5148-5159.	4.0	160
58	pH-Triggered Charge-Reversal Polypeptide Nanoparticles for Cisplatin Delivery: Preparation and In Vitro Evaluation. Biomacromolecules, 2013, 14, 2023-2032.	2.6	159
59	The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with l-lactic acid oligomer for bone repair. Acta Biomaterialia, 2009, 5, 2680-2692.	4.1	157
60	Synergistic therapeutic effects of Schiff's base cross-linked injectable hydrogels for local co-delivery of metformin and 5-fluorouracil in a mouse colon carcinoma model. Biomaterials, 2016, 75, 148-162.	5.7	157
61	Porphyrin-based covalent organic framework nanoparticles for photoacoustic imaging-guided photodynamic and photothermal combination cancer therapy. Biomaterials, 2019, 223, 119459.	5.7	157
62	BCNU-loaded PEG–PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells. Journal of Controlled Release, 2006, 114, 307-316.	4.8	155
63	Selectively Potentiating Hypoxia Levels by Combretastatin A4 Nanomedicine: Toward Highly Enhanced Hypoxiaâ€Activated Prodrug Tirapazamine Therapy for Metastatic Tumors. Advanced Materials, 2019, 31, e1805955.	11.1	154
64	Selfâ€Stabilized Hyaluronate Nanogel for Intracellular Codelivery of Doxorubicin and Cisplatin to Osteosarcoma. Advanced Science, 2018, 5, 1700821.	5.6	153
65	Surface-grafted silica linked with l-lactic acid oligomer: A novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer, 2007, 48, 1688-1694.	1.8	152
66	Advances in nanomedicine for cancer starvation therapy. Theranostics, 2019, 9, 8026-8047.	4.6	151
67	Synthesis and characterization of the paclitaxel/MPEG-PLA block copolymer conjugate. Biomaterials, 2005, 26, 2121-2128.	5.7	148
68	Biodegradable Block Copolymer-Doxorubicin Conjugates via Different Linkages: Preparation, Characterization, and In Vitro Evaluation. Biomacromolecules, 2010, 11, 2094-2102.	2.6	148
69	Facile Synthesis of Glycopolypeptides by Combination of Ringâ€Opening Polymerization of an Alkyneâ€Substituted <i>N</i> àâ€carboxyanhydride and Click "Glycosylation― Macromolecular Rapid Communications, 2010, 31, 991-997.	2.0	146
70	Recent progress in polymer-based platinum drug delivery systems. Progress in Polymer Science, 2018, 87, 70-106.	11.8	144
71	Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer, 2009, 50, 4308-4316.	1.8	142
72	Dual Drug Backboned Shattering Polymeric Theranostic Nanomedicine for Synergistic Eradication of Patientâ€Derived Lung Cancer. Advanced Materials, 2018, 30, 1706220.	11.1	142

#	Article	IF	CITATIONS
73	Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy efficacy in vitro. Journal of Materials Chemistry B, 2013, 1, 69-81.	2.9	141
74	Rationally Designed Polymer Conjugate for Tumor-Specific Amplification of Oxidative Stress and Boosting Antitumor Immunity. Nano Letters, 2020, 20, 2514-2521.	4.5	140
7 5	Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery. Journal of Materials Chemistry, 2011, 21, 11383.	6.7	138
76	PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for osteosarcoma treatment. Biomaterials, 2014, 35, 8723-8734.	5.7	136
77	Versatile preparation of intracellular-acidity-sensitive oxime-linked polysaccharide-doxorubicin conjugate for malignancy therapeutic. Biomaterials, 2015, 54, 72-86.	5 . 7	136
78	Localized Co-delivery of Doxorubicin, Cisplatin, and Methotrexate by Thermosensitive Hydrogels for Enhanced Osteosarcoma Treatment. ACS Applied Materials & Interfaces, 2015, 7, 27040-27048.	4.0	134
79	Intracellular microenvironment responsive PEGylated polypeptide nanogels with ionizable cores for efficient doxorubicin loading and triggered release. Journal of Materials Chemistry, 2012, 22, 14168.	6.7	132
80	Ultrafine fibers electrospun from biodegradable polymers. Journal of Applied Polymer Science, 2003, 89, 1085-1092.	1.3	131
81	Study of the Synthesis, Crystallization, and Morphology of Poly(ethylene glycol)â^Poly(ε-caprolactone) Diblock Copolymers. Biomacromolecules, 2004, 5, 2042-2047.	2.6	131
82	Polymerization of Lactide Using Achiral Bis(pyrrolidene) Schiff Base Aluminum Complexes. Macromolecules, 2009, 42, 1058-1066.	2.2	131
83	Polymer materials for prevention of postoperative adhesion. Acta Biomaterialia, 2017, 61, 21-40.	4.1	130
84	A glutathione-responsive sulfur dioxide polymer prodrug as a nanocarrier for combating drug-resistance in cancer chemotherapy. Biomaterials, 2018, 178, 706-719.	5.7	130
85	Injectable Selfâ€Healing Hydrogel Wound Dressing with Cysteineâ€Specific Onâ€Demand Dissolution Property Based on Tandem Dynamic Covalent Bonds. Advanced Functional Materials, 2021, 31, 2011230.	7.8	130
86	Sandwichâ€Like Fibers/Sponge Composite Combining Chemotherapy and Hemostasis for Efficient Postoperative Prevention of Tumor Recurrence and Metastasis. Advanced Materials, 2018, 30, e1803217.	11.1	129
87	Controlled release of urea encapsulated by starch-g-poly(l-lactide). Carbohydrate Polymers, 2008, 72, 342-348.	5.1	128
88	pH- and thermo-responsive poly(N-isopropylacrylamide-co-acrylic acid derivative) copolymers and hydrogels with LCST dependent on pH and alkyl side groups. Journal of Materials Chemistry B, 2013, 1, 5578.	2.9	127
89	Receptor and Microenvironment Dual-Recognizable Nanogel for Targeted Chemotherapy of Highly Metastatic Malignancy. Nano Letters, 2017, 17, 4526-4533.	4.5	127
90	Synthesis and Characterization of RGD Peptide Grafted Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 67 590-596.	Td (glycol) 2.6	-b-Poly(l-lactid 126

590-596.

#	Article	IF	Citations
91	Biodegradable pH-responsive polyacrylic acid derivative hydrogels with tunable swelling behavior for oral delivery of insulin. Polymer, 2013, 54, 1786-1793.	1.8	126
92	Anti-tumor efficacy of c(RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin. Biomaterials, 2014, 35, 3005-3014.	5.7	126
93	RGD targeting hyaluronic acid coating system for PEI-PBLG polycation gene carriers. Journal of Controlled Release, 2011, 155, 47-53.	4.8	125
94	Fabrication and Drug Delivery of Ultrathin Mesoporous Bioactive Glass Hollow Fibers. Advanced Functional Materials, 2010, 20, 1503-1510.	7.8	124
95	Disulfide crosslinked PEGylated starch micelles as efficient intracellular drug delivery platforms. Soft Matter, 2013, 9, 2224.	1.2	122
96	Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly(l-glutamic) Tj ETQq0 0 0 rgBT /Ove Controlled Release, 2015, 205, 89-97.	rlock 10 T 4.8	f 50 547 Td (122
97	Enolic Schiff Base Aluminum Complexes and Their Catalytic Stereoselective Polymerization of Racemic Lactide. Chemistry - A European Journal, 2008, 14, 3126-3136.	1.7	121
98	Co-Electrospun Blends of PLGA, Gelatin, and Elastin as Potential Nonthrombogenic Scaffolds for Vascular Tissue Engineering. Biomacromolecules, 2011, 12, 399-408.	2.6	121
99	pH and reduction dual-responsive nanogel cross-linked by quaternization reaction for enhanced cellular internalization and intracellular drug delivery. Polymer Chemistry, 2013, 4, 1199-1207.	1.9	121
100	Biodegradable, p <scp>H</scp> â€ <scp>R</scp> esponsive Carboxymethyl Cellulose/ <scp>P</scp> oly(<scp>A</scp> crylic Acid) Hydrogels for Oral Insulin Delivery. Macromolecular Bioscience, 2014, 14, 565-575.	2.1	121
101	Nanoparticles for Gene Delivery. Small, 2013, 9, 2034-2044.	5.2	120
102	Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair. Acta Biomaterialia, 2018, 73, 103-111.	4.1	117
103	Electrospun poly(l-lactide)-grafted hydroxyapatite/poly(l-lactide) nanocomposite fibers. European Polymer Journal, 2007, 43, 3187-3196.	2.6	115
104	Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(l-lactide) composites. Acta Biomaterialia, 2008, 4, 1005-1015.	4.1	115
105	Synthesis and Characterization of Novel Biodegradable and Electroactive Hydrogel Based on Aniline Oligomer and Gelatin. Macromolecular Bioscience, 2012, 12, 241-250.	2.1	115
106	Tailoring Platinum(IV) Amphiphiles for Self-Targeting All-in-One Assemblies as Precise Multimodal Theranostic Nanomedicine. ACS Nano, 2018, 12, 7272-7281.	7.3	114
107	Poly(l-lysine)-Graft-Chitosan Copolymers:Â Synthesis, Characterization, and Gene Transfection Effect. Biomacromolecules, 2007, 8, 1425-1435.	2.6	113
108	A biodegradable triblock copolymer poly(ethylene glycol)-b-poly(l-lactide)-b-poly(l-lysine): Synthesis, self-assembly, and RGD peptide modification. Polymer, 2007, 48, 139-149.	1.8	113

#	Article	IF	CITATIONS
109	Preparation, Bioactivity, and Drug Release of Hierarchical Nanoporous Bioactive Glass Ultrathin Fibers. Advanced Materials, 2010, 22, 754-758.	11.1	113
110	Investigation of Poly(lactide) Stereocomplexes: 3-Armed Poly(<scp> </scp> -lactide) Blended with Linear and 3-Armed Enantiomers. Journal of Physical Chemistry B, 2012, 116, 9983-9991.	1.2	113
111	Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects. Acta Biomaterialia, 2014, 10, 1392-1402.	4.1	113
112	A pH-Responsive Detachable PEG Shielding Strategy for Gene Delivery System in Cancer Therapy. Biomacromolecules, 2017, 18, 1342-1349.	2.6	113
113	Study on crystalline morphology of poly(l-lactide)-poly(ethylene glycol) diblock copolymer. Polymer, 2004, 45, 5969-5977.	1.8	111
114	Pyrrolide-Ligated Organoyttrium Complexes. Synthesis, Characterization, and Lactide Polymerization Behavior. Organometallics, 2007, 26, 671-678.	1.1	111
115	Covalent Organic Nanosheets Integrated Heterojunction with Two Strategies To Overcome Hypoxic-Tumor Photodynamic Therapy. Chemistry of Materials, 2019, 31, 3313-3323.	3.2	111
116	Electroactive Oligoaniline-Containing Self-Assembled Monolayers for Tissue Engineering Applications. Biomacromolecules, 2007, 8, 3025-3034.	2.6	110
117	Enantiomeric PLA–PEG block copolymers and their stereocomplex micelles used as rifampin delivery. Journal of Nanoparticle Research, 2007, 9, 777-785.	0.8	109
118	Thermosensitive hydrogels based on polypeptides for localized and sustained delivery of anticancer drugs. Biomaterials, 2013, 34, 10338-10347.	5.7	109
119	The immobilization of proteins on biodegradable polymer fibers via click chemistry. Biomaterials, 2008, 29, 1118-1126.	5.7	108
120	Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery. Journal of Controlled Release, 2011, 155, 3-10.	4.8	108
121	RGD-Conjugated Copolymer Incorporated into Composite of Poly(lactide-co-glycotide) and Poly(l-lactide)-Grafted Nanohydroxyapatite for Bone Tissue Engineering. Biomacromolecules, 2011, 12, 2667-2680.	2.6	108
122	Synthesis of Biodegradable and Electroactive Tetraaniline Grafted Poly(ester amide) Copolymers for Bone Tissue Engineering. Biomacromolecules, 2012, 13, 2881-2889.	2.6	106
123	Self-reinforced endocytoses of smart polypeptide nanogels for "on-demand―drug delivery. Journal of Controlled Release, 2013, 172, 444-455.	4.8	106
124	Supramolecular Assembled Programmable Nanomedicine As In Situ Cancer Vaccine for Cancer Immunotherapy. Advanced Materials, 2021, 33, e2007293.	11.1	106
125	Disulfide Crossâ€Linked Polyurethane Micelles as a Reductionâ€Triggered Drug Delivery System for Cancer Therapy. Advanced Healthcare Materials, 2014, 3, 752-760.	3.9	105
126	Molecular Strings Significantly Improved the Gene Transfection Efficiency of Polycations. Journal of the American Chemical Society, 2018, 140, 11992-12000.	6.6	105

#	Article	IF	CITATIONS
127	Polymer scaffolds facilitate spinal cord injury repair. Acta Biomaterialia, 2019, 88, 57-77.	4.1	105
128	Biodegradable poly(l-lactide)/poly(É>-caprolactone)-modified montmorillonite nanocomposites: Preparation and characterization. Polymer, 2007, 48, 6439-6447.	1.8	104
129	Synthesis of thermal and oxidation dual responsive polymers for reactive oxygen species (ROS)-triggered drug release. Polymer Chemistry, 2015, 6, 738-747.	1.9	104
130	Engineering Metal–Organic Frameworks for Photoacoustic Imaging-Guided Chemo-/Photothermal Combinational Tumor Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 41035-41045.	4.0	104
131	A Multistage Cooperative Nanoplatform Enables Intracellular Coâ€Delivery of Proteins and Chemotherapeutics for Cancer Therapy. Advanced Materials, 2020, 32, e2000013.	11.1	104
132	Direct Formation of Giant Vesicles from Synthetic Polypeptides. Langmuir, 2007, 23, 8308-8315.	1.6	103
133	pH and reduction dual responsive polyurethane triblock copolymers for efficient intracellular drug delivery. Soft Matter, 2013, 9, 2637.	1.2	103
134	From Antimicrobial Peptides to Antimicrobial Poly(αâ€amino acid)s. Advanced Healthcare Materials, 2018, 7, e1800354.	3.9	102
135	PLA-PEG-PLA and Its Electroactive Tetraaniline Copolymer as Multi-interactive Injectable Hydrogels for Tissue Engineering. Biomacromolecules, 2013, 14, 1904-1912.	2.6	100
136	Gold Nanorods Electrostatically Binding Nucleic Acid Probe for In Vivo MicroRNA Amplified Detection and Photoacoustic Imagingâ€Guided Photothermal Therapy. Advanced Functional Materials, 2018, 28, 1800490.	7.8	100
137	pH-responsive zwitterionic copolypeptides as charge conversional shielding system for gene carriers. Journal of Controlled Release, 2014, 174, 117-125.	4.8	99
138	Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy. Journal of Controlled Release, 2017, 255, 81-93.	4.8	99
139	Multifunctional Theranostic Nanoparticles Derived from Fruit-Extracted Anthocyanins with Dynamic Disassembly and Elimination Abilities. ACS Nano, 2018, 12, 8255-8265.	7.3	99
140	Smart transformable nanoparticles for enhanced tumor theranostics. Applied Physics Reviews, 2021, 8,	5.5	99
141	Magnesium and Zinc Complexes Supported by <i>N</i> , <i>O</i> -Bidentate Pyridyl Functionalized Alkoxy Ligands: Synthesis and Immortal ROP of Îμ-CL and <scp>l</scp> -LA. Organometallics, 2012, 31, 4182-4190.	1.1	98
142	Targeted hydroxyethyl starch prodrug for inhibiting the growth and metastasis of prostate cancer. Biomaterials, 2017, 116, 82-94.	5.7	98
143	Mucoadhesive Cationic Polypeptide Nanogel with Enhanced Penetration for Efficient Intravesical Chemotherapy of Bladder Cancer. Advanced Science, 2018, 5, 1800004.	5.6	98
144	Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas. Nano Research, 2018, 11, 4806-4822.	5.8	98

#	Article	IF	CITATIONS
145	Highly enhanced cancer immunotherapy by combining nanovaccine with hyaluronidase. Biomaterials, 2018, 171, 198-206.	5.7	98
146	Decisive Role of Hydrophobic Side Groups of Polypeptides in Thermosensitive Gelation. Biomacromolecules, 2012, 13, 2053-2059.	2.6	97
147	Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 1086-1093.	2.0	97
148	Thermo-sensitive polypeptide hydrogel for locally sequential delivery of two-pronged antitumor drugs. Acta Biomaterialia, 2017, 58, 44-53.	4.1	97
149	Formation of a Unique Crystal Morphology for the Poly(ethylene glycol)â^Poly(Îμ-caprolactone) Diblock Copolymer. Biomacromolecules, 2006, 7, 252-258.	2.6	96
150	Poly(l-lactide)/starch blends compatibilized with poly(l-lactide)-g-starch copolymer. Carbohydrate Polymers, 2006, 65, 75-80.	5.1	96
151	Targeted delivery of cisplatin by LHRH-peptide conjugated dextran nanoparticles suppresses breast cancer growth and metastasis. Acta Biomaterialia, 2015, 18, 132-143.	4.1	96
152	Glucose-sensitive polypeptide micelles for self-regulated insulin release at physiological pH. Journal of Materials Chemistry, 2012, 22, 12319.	6.7	95
153	miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Acta Biomaterialia, 2015, 25, 184-193.	4.1	95
154	Locally Deployable Nanofiber Patch for Sequential Drug Delivery in Treatment of Primary and Advanced Orthotopic Hepatomas. ACS Nano, 2018, 12, 6685-6699.	7.3	95
155	Treatment of severe sepsis with nanoparticulate cell-free DNA scavengers. Science Advances, 2020, 6, eaay7148.	4.7	94
156	Bioactive Materials Promote Wound Healing through Modulation of Cell Behaviors. Advanced Science, 2022, 9, e2105152.	5.6	94
157	Improved Cell Adhesion and Osteogenesis of op-HA/PLGA Composite by Poly(dopamine)-Assisted Immobilization of Collagen Mimetic Peptide and Osteogenic Growth Peptide. ACS Applied Materials & & & & & & & & & & & & & & & & & & &	4.0	93
158	Cyanine-Assisted Exfoliation of Covalent Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Tumor Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 39503-39512.	4.0	93
159	Pulmonary Codelivery of Doxorubicin and siRNA by pHâ€Sensitive Nanoparticles for Therapy of Metastatic Lung Cancer. Small, 2015, 11, 4321-4333.	5.2	92
160	Scavenger Receptor-Mediated Targeted Treatment of Collagen-Induced Arthritis by Dextran Sulfate-Methotrexate Prodrug. Theranostics, 2017, 7, 97-105.	4.6	92
161	Remarkable Melting Behavior of PLA Stereocomplex in Linear PLLA/PDLA Blends. Industrial & Engineering Chemistry Research, 2015, 54, 2246-2253.	1.8	91
162	Positively charged polypeptide nanogel enhances mucoadhesion and penetrability of 10-hydroxycamptothecin in orthotopic bladder carcinoma. Journal of Controlled Release, 2017, 259, 136-148.	4.8	91

#	Article	IF	Citations
163	Nanogelâ€Incorporated Physical and Chemical Hybrid Gels for Highly Effective Chemo–Protein Combination Therapy. Advanced Functional Materials, 2015, 25, 6744-6755.	7.8	90
164	Injectable Hydrogel–Microsphere Construct with Sequential Degradation for Locally Synergistic Chemotherapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3487-3496.	4.0	90
165	Synthesis and characterization of poly(ethylene glycol)-b-poly (l-lactide)-b-poly(l-glutamic acid) triblock copolymer. Polymer, 2005, 46, 653-659.	1.8	89
166	Lactose mediated liver-targeting effect observed by ex vivo imaging technology. Biomaterials, 2010, 31, 2646-2654.	5.7	89
167	Efficacious hepatoma-targeted nanomedicine self-assembled from galactopeptide and doxorubicin driven by two-stage physical interactions. Journal of Controlled Release, 2013, 169, 193-203.	4.8	89
168	Intracellular pH-sensitive supramolecular amphiphiles based on host–guest recognition between benzimidazole and β-cyclodextrin as potential drug delivery vehicles. Polymer Chemistry, 2013, 4, 3265.	1.9	89
169	Electrospinning of aniline pentamer-graft-gelatin/PLLA nanofibers for bone tissue engineering. Acta Biomaterialia, 2014, 10, 5074-5080.	4.1	89
170	Combretastatin A4 Nanodrugâ€Induced MMP9 Amplification Boosts Tumorâ€Selective Release of Doxorubicin Prodrug. Advanced Materials, 2019, 31, e1904278.	11.1	88
171	The starch grafted poly(l-lactide) and the physical properties of its blending composites. Polymer, 2005, 46, 5723-5729.	1.8	87
172	Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy. Journal of Controlled Release, 2019, 295, 153-163.	4.8	87
173	Stereoselective polymerization ofrac-lactide with a bulky aluminum/Schiff base complex. Journal of Polymer Science Part A, 2004, 42, 5974-5982.	2.5	86
174	Layer-by-layer assembly of poly(l-glutamic acid)/chitosan microcapsules for high loading and sustained release of 5-fluorouracil. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78, 336-345.	2.0	86
175	Hydrogels based on pH-responsive reversible carbon–nitrogen double-bond linkages for biomedical applications. Materials Chemistry Frontiers, 2018, 2, 1765-1778.	3.2	86
176	A disassembling strategy overcomes the EPR effect and renal clearance dilemma of the multifunctional theranostic nanoparticles for cancer therapy. Biomaterials, 2019, 197, 284-293.	5.7	86
177	Micellization and Reversible pH-Sensitive Phase Transfer of the Hyperbranched Multiarm PEI–PBLG Copolymer. Chemistry - A European Journal, 2006, 12, 4305-4312.	1.7	85
178	Versatile synthesis of temperature-sensitive polypeptides by click grafting of oligo(ethylene glycol). Polymer Chemistry, 2011, 2, 2627.	1.9	85
179	High Antibacterial Activity and Selectivity of the Versatile Polysulfoniums that Combat Drug Resistance. Advanced Materials, 2021, 33, e2104402.	11.1	85
180	Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	4.2	85

#	Article	IF	Citations
181	The influence of hard-segments on two-phase structure and shape memory properties of PCL-based segmented polyurethanes. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 557-570.	2.4	84
182	Facile Synthesis of Hydroxyl-Ended, Highly Stereoregular, Star-Shaped Poly(lactide) from Immortal ROP of <i>rac</i> -Lactide and Kinetics Study. Macromolecules, 2010, 43, 6678-6684.	2.2	84
183	Methoxypoly(ethylene glycol) <i>à€blockâ€</i> Poly(<scp>L</scp> â€glutamic acid)‣oaded Cisplatin and a Combination With iRGD for the Treatment of Nonâ€Smallâ€Cell Lung Cancers. Macromolecular Bioscience, 2012, 12, 1514-1523.	2.1	83
184	A novel approach to grafting polymerization of $\hat{l}\mu\text{-caprolactone}$ onto starch granules. Carbohydrate Polymers, 2005, 60, 103-109.	5.1	82
185	Composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles. Journal of Biomedical Materials Research - Part A, 2007, 81A, 515-522.	2.1	82
186	Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan. Acta Biomaterialia, 2013, 9, 7276-7288.	4.1	82
187	Composition Dependence of the Crystallization Behavior and Morphology of the Poly(ethylene) Tj ETQq1 1 0.78-	4314 rgBT 2.6	Overlock 1
188	Thermo- and pH-responsive HPC-g-AA/AA hydrogels for controlled drug delivery applications. Polymer, 2011, 52, 676-682.	1.8	81
189	Doxorubicin-Loaded Carborane-Conjugated Polymeric Nanoparticles as Delivery System for Combination Cancer Therapy. Biomacromolecules, 2015, 16, 3980-3988.	2.6	81
190	Injectable Cholesterolâ€Enhanced Stereocomplex Polylactide Thermogel Loading Chondrocytes for Optimized Cartilage Regeneration. Advanced Healthcare Materials, 2019, 8, e1900312.	3.9	81
191	An immune cocktail therapy to realize multiple boosting of the cancer-immunity cycle by combination of drug/gene delivery nanoparticles. Science Advances, 2020, 6, .	4.7	81
192	Surface modification of poly(l-lactic acid) to improve its cytocompatibility via assembly of polyelectrolytes and gelatin. Acta Biomaterialia, 2006, 2, 155-164.	4.1	80
193	Electroactive Aniline Pentamer Cross-Linking Chitosan for Stimulation Growth of Electrically Sensitive Cells. Biomacromolecules, 2008, 9, 2637-2644.	2.6	80
194	Doxorubicin-loaded polysaccharide nanoparticles suppress the growth of murine colorectal carcinoma and inhibit the metastasis of Amurine mammary carcinoma in rodent models. Biomaterials, 2015, 51, 161-172.	5.7	80
195	DOX/IL-2/IFN- \hat{I}^3 co-loaded thermo-sensitive polypeptide hydrogel for efficient melanoma treatment. Bioactive Materials, 2018, 3, 118-128.	8.6	79
196	A pH-sensitive charge-conversion system for doxorubicin delivery. Acta Biomaterialia, 2013, 9, 7672-7678.	4.1	78
197	Modified PLA Homochiral Crystallites Facilitated by the Confinement of PLA Stereocomplexes. Macromolecules, 2013, 46, 6963-6971.	2.2	78
198	In Situ Electroactive and Antioxidant Supramolecular Hydrogel Based on Cyclodextrin/ <scp>C</scp> opolymer Inclusion for Tissue Engineering Repair. Macromolecular Bioscience, 2014, 14, 440-450.	2.1	78

#	Article	IF	CITATIONS
199	Injectable in situ forming poly(<scp>l</scp> -glutamic acid) hydrogels for cartilage tissue engineering. Journal of Materials Chemistry B, 2016, 4, 947-961.	2.9	78
200	Preclinical Evaluation of Antitumor Activity of Acid-Sensitive PEGylated Doxorubicin. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21202-21214.	4.0	77
201	Biomimetic biphasic scaffolds for osteochondral defect repair. International Journal of Energy Production and Management, 2015, 2, 221-228.	1.9	77
202	Synthesis of Poly(ε-caprolactone)-b-Poly(γ-benzyl-l-glutamic acid) Block Copolymer Using Amino Organic Calcium Catalyst. Biomacromolecules, 2003, 4, 1800-1804.	2.6	76
203	Formation of Reversible Shell Cross-Linked Micelles from the Biodegradable Amphiphilic Diblock Copolymer Poly(l-cysteine)-block-Poly(l-lactide). Langmuir, 2008, 24, 10099-10106.	1.6	76
204	Hydrophobic poly (amino acid) modified PEI mediated delivery of rev-casp-3 for cancer therapy. Biomaterials, 2012, 33, 4589-4596.	5.7	75
205	Biodegradable Stereocomplex Micelles Based on Dextran- <i>block</i> polylactide as Efficient Drug Deliveries. Langmuir, 2013, 29, 13072-13080.	1.6	75
206	Synthesis of mesoporous silica nanoparticle–oxaliplatin conjugates for improved anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 117, 75-81.	2.5	75
207	Polyion complex micelles with gradient pH-sensitivity for adjustable intracellular drug delivery. Polymer Chemistry, 2015, 6, 397-405.	1.9	75
208	Spatiotemporally Targeted Nanomedicine Overcomes Hypoxia-Induced Drug Resistance of Tumor Cells after Disrupting Neovasculature. Nano Letters, 2020, 20, 6191-6198.	4.5	75
209	Bimetallic salen–aluminum complexes: synthesis, characterization and their reactivity with rac-lactide and Îμ-caprolactone. Polymer Chemistry, 2014, 5, 3894.	1.9	74
210	Biodegradable Amphiphilic Block Copolymers Bearing Protected Hydroxyl Groups: Synthesis and Characterization. Biomacromolecules, 2008, 9, 553-560.	2.6	73
211	Chiral Polypeptide Thermogels Induce Controlled Inflammatory Response as Potential Immunoadjuvants. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8725-8730.	4.0	73
212	Layerâ€byâ€Layer Buildup of Poly(<scp>L</scp> â€glutamic acid)/Chitosan Film for Biologically Active Coating. Macromolecular Bioscience, 2009, 9, 268-278.	2.1	72
213	Poly(<scp>L</scp> â€glutamic acid) grafted with oligo(2â€(2â€methoxyethoxy)ethoxy)ethyl methacrylate): Thermal phase transition, secondary structure, and selfâ€assembly. Journal of Polymer Science Part A, 2011, 49, 2665-2676.	2.5	72
214	Crystallization behavior of biodegradable poly(<scp>L</scp> â€lactic acid) filled with a powerful nucleating agent: <i>N,N</i> ′â€bis(benzoyl) suberic acid dihydrazide. Journal of Applied Polymer Science, 2011, 121, 1408-1416.	1.3	72
215	pH-Responsive Poly(ethylene glycol)/Poly(<scp>l</scp> -lactide) Supramolecular Micelles Based on Host–Guest Interaction. ACS Applied Materials & Lactide) Supramolecular Micelles Based on Host–Guest Interaction. ACS Applied Materials & Lactide) Supramolecular Micelles Based on Host–Guest Interaction. ACS Applied Materials & Lactide) Supramolecular Micelles Based on Host–Guest Interaction. ACS Applied Materials & Lactide) Supramolecular Micelles Based on Host–Guest Interaction. ACS Applied Materials & Lactide) Supramolecular Micelles Based on Host–Guest Interaction. ACS Applied Materials & Lactide) Supramolecular Micelles Based on Host–Guest Interaction. ACS Applied Materials & Lactide) Supramolecular Micelles Based on Host–Guest Interaction. ACS Applied Materials & Lactide) Supramolecular Micelles Based On Host–Guest Interaction. ACS Applied Materials & Lactide) Supramolecular Micelles Based On Host–Guest Interaction. ACS Applied Materials & Lactide) Supramolecular Micelles Based On Host–Guest Interaction. ACS Applied Materials & Lactide Based On Host— (1998) ACS Applied Materials & Lactide Based On Host— (1998) ACS Applied Materials & Lactide Based On Host— (1998) ACS Applied Materials & Lactide Based On Hostâf (1998) ACS Applied Materials & Lactide Based On Hostâf (1998) ACS Applied Materials & Lactide Based On Hostâf (1998) ACS Applied Materials & Lactide Based On Hostâf (1998) ACS Applied Materials & Lactide Based On Hostâf (1998) ACS Applied Materials & Lactide Based On Hostâf (1998) ACS Applied Materials & Lactide Based On Hostâf (1998) ACS Applied Materials & Lactide Based On Hostâf (1998) ACS Applied Materials & Lactide Based On Hostâf (1998) ACS Applied Materials & Lactide Based On Hostâf (1998) ACS Applied Materials & Lactide Based On Hostâf (1998) ACS Applied Materials & Lactide Based On Hostâf (1998) ACS Applied Materials & Lactide Based On Hostâf (1998) ACS Applied Materials & Lactide Based On Hostâf (1998) ACS Applied Materials & Lactide Based On Hostâf (1998) ACS Applie	4.0	72
216	Nucleating effect and crystal morphology controlling based on binary phase behavior between organic nucleating agent and poly(I-lactic acid). Polymer, 2015, 67, 63-71.	1.8	71

#	Article	IF	Citations
217	Reduction-responsive polypeptide nanogel delivers antitumor drug for improved efficacy and safety. Acta Biomaterialia, 2015, 27, 179-193.	4.1	71
218	Quantitative synthesis of bis(cyclic carbonate)s by iron catalyst for non-isocyanate polyurethane synthesis. Green Chemistry, 2015, 17, 373-379.	4.6	71
219	Breaking the Paradox between Catalytic Activity and Stereoselectivity: <i>rac</i> -Lactide Polymerization by Trinuclear Salen–Al Complexes. Macromolecules, 2018, 51, 906-913.	2.2	71
220	Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy. Science Bulletin, 2021, 66, 362-373.	4.3	71
221	Morphology and Structure of Single Crystals of Poly(ethylene glycol)â^Poly(Îμ-caprolactone) Diblock Copolymers. Macromolecules, 2006, 39, 3717-3719.	2.2	70
222	In Vitro Studies on Regulation of Osteogenic Activities by Electrical Stimulus on Biodegradable Electroactive Polyelectrolyte Multilayers. Biomacromolecules, 2014, 15, 3146-3157.	2.6	70
223	One-Step "Click Chemistry―Synthesized Cross-Linked Prodrug Nanogel for Highly Selective Intracellular Drug Delivery and Upregulated Antitumor Efficacy. ACS Applied Materials & Delivery and Upregulated Antitumor Efficacy. ACS Applied Materials & Delivery and Interfaces, 2016, 8, 10673-10682.	4.0	70
224	Activated macrophage-targeted dextran–methotrexate/folate conjugate prevents deterioration of collagen-induced arthritis in mice. Journal of Materials Chemistry B, 2016, 4, 2102-2113.	2.9	70
225	Sugars-grafted aliphatic biodegradable poly(L-lactide-co-carbonate)s by click reaction and their specific interaction with lectin molecules. Journal of Polymer Science Part A, 2007, 45, 3204-3217.	2.5	69
226	Novel pH―and Temperatureâ€Responsive Block Copolymers with Tunable pHâ€Responsive Range. Macromolecular Rapid Communications, 2008, 29, 490-497.	2.0	69
227	Highly Efficient "Grafting From―an αâ€Helical Polypeptide Backbone by Atom Transfer Radical Polymerization. Macromolecular Bioscience, 2011, 11, 192-198.	2.1	69
228	Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 377-386.	1.7	69
229	A poly(l-glutamic acid)-combretastatin A4 conjugate for solid tumor therapy: Markedly improved therapeutic efficiency through its low tissue penetration in solid tumor. Acta Biomaterialia, 2017, 53, 179-189.	4.1	69
230	Thermosensitive Polypeptide Hydrogels as a Platform for ROSâ€Triggered Cargo Release with Innate Cytoprotective Ability under Oxidative Stress. Advanced Healthcare Materials, 2016, 5, 1979-1990.	3.9	68
231	Tumor microenvironment-labile polymer–doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma. Acta Biomaterialia, 2018, 77, 63-73.	4.1	68
232	Positive feedback nanoamplifier responded to tumor microenvironments for self-enhanced tumor imaging and therapy. Biomaterials, 2019, 216, 119255.	5.7	68
233	A Nanocomposite Vehicle Based on Metal–Organic Framework Nanoparticle Incorporated Biodegradable Microspheres for Enhanced Oral Insulin Delivery. ACS Applied Materials & Delivery. ACS Applied Materials & Delivery. Interfaces, 2020, 12, 22581-22592.	4.0	67
234	Surface-modified hydroxyapatite linked byL-lactic acid oligomer in the absence of catalyst. Journal of Polymer Science Part A, 2005, 43, 5177-5185.	2.5	66

#	Article	IF	Citations
235	Thermo-responsive "hairy-rod―polypeptides for smart antitumor drug delivery. Polymer Chemistry, 2013, 4, 3345.	1.9	66
236	Polymer nanoparticles as adjuvants in cancer immunotherapy. Nano Research, 2018, 11, 5769-5786.	5.8	66
237	Medicated wound dressings based on poly(vinyl alcohol)/poly(N-vinyl pyrrolidone)/chitosan hydrogels. Journal of Applied Polymer Science, 2006, 101, 2453-2463.	1.3	65
238	A non-viral suicide gene delivery system traversing the blood brain barrier for non-invasive glioma targeting treatment. Journal of Controlled Release, 2016, 243, 357-369.	4.8	65
239	Highly Bioadhesive Polymer Membrane Continuously Releases Cytostatic and Anti-Inflammatory Drugs for Peritoneal Adhesion Prevention. ACS Biomaterials Science and Engineering, 2018, 4, 2026-2036.	2.6	65
240	Injectable Hydrogels as Unique Platforms for Local Chemotherapeuticsâ€Based Combination Antitumor Therapy. Macromolecular Bioscience, 2018, 18, e1800240.	2.1	65
241	Polycations for Gene Delivery: Dilemmas and Solutions. Bioconjugate Chemistry, 2019, 30, 338-349.	1.8	65
242	Controlled synthesis of polypeptides. Chinese Chemical Letters, 2020, 31, 3001-3014.	4.8	65
243	3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects. Advanced Science, 2022, 9, e2103875.	5.6	65
244	Novel thermo- and pH-responsive hydroxypropyl cellulose- and poly (l-glutamic acid)-based microgels for oral insulin controlled release. Carbohydrate Polymers, 2012, 89, 1207-1214.	5.1	64
245	Improved mechanical and thermal properties of PLLA by solvent blending with PDLA-b-PEG-b-PDLA. Polymer Degradation and Stability, 2014, 101, 10-17.	2.7	64
246	Air-Stable Salen–Iron Complexes: Stereoselective Catalysts for Lactide and Îμ-Caprolactone Polymerization through ⟨i⟩in Situ⟨/i⟩ Initiation. Macromolecules, 2017, 50, 9188-9195.	2.2	64
247	Antineoplastic Drugâ€Free Anticancer Strategy Enabled by Hostâ€Defenseâ€Peptidesâ€Mimicking Synthetic Polypeptides. Advanced Materials, 2020, 32, e2001108.	11.1	64
248	A pHâ€Triggered Selfâ€Unpacking Capsule Containing Zwitterionic Hydrogelâ€Coated MOF Nanoparticles for Efficient Oral Exendinâ€4 Delivery. Advanced Materials, 2021, 33, e2102044.	11.1	64
249	Facile one-pot synthesis of glucose-sensitive nanogel via thiol-ene click chemistry for self-regulated drug delivery. Acta Biomaterialia, 2013, 9, 6535-6543.	4.1	63
250	Coâ€delivery of 10â€Hydroxycamptothecin with Doxorubicin Conjugated Prodrugs for Enhanced Anticancer Efficacy. Macromolecular Bioscience, 2013, 13, 584-594.	2.1	63
251	Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. Journal of Controlled Release, 2016, 235, 125-133.	4.8	63
252	Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia. Biomaterials, 2018, 181, 378-391.	5.7	63

#	Article	IF	CITATIONS
253	Stereoselective Ring-Opening Polymerization of rac-Lactides Catalyzed by Aluminum Hemi-Salen Complexes. Organometallics, 2013, 32, 5435-5444.	1.1	62
254	Injectable enzymatically crosslinked hydrogels based on a poly(<scp> </scp> -glutamic acid) graft copolymer. Polymer Chemistry, 2014, 5, 5069-5076.	1.9	62
255	Codelivery of Antitumor Drug and Gene by a pH-Sensitive Charge-Conversion System. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3207-3215.	4.0	62
256	Composite PLA/PEG/nHA/Dexamethasone Scaffold Prepared by 3D Printing for Bone Regeneration. Macromolecular Bioscience, 2018, 18, e1800068.	2.1	62
257	Neutralizing tumor-promoting inflammation with polypeptide-dexamethasone conjugate for microenvironment modulation and colorectal cancer therapy. Biomaterials, 2020, 232, 119676.	5.7	62
258	The Surface Modification of Hydroxyapatite Nanoparticles by the Ring Opening Polymerization of ⟨i⟩î³⟨li⟩â€Benzylâ€ <scp⟩l⟨ 2009,="" 631-638.<="" 9="" bioscience,="" i⟩â€carboxyanhydride.="" macromolecular="" scp⟩â€glutamate="" td="" ⟨i⟩n⟨=""><td>, 2.1</td><td>61</td></scp⟩l⟨>	, 2.1	61
259	Versatile Biofunctionalization of Polypeptide-Based Thermosensitive Hydrogels via Click Chemistry. Biomacromolecules, 2013, 14, 468-475.	2.6	61
260	Electrospun hydroxyapatite grafted poly(l-lactide)/poly(lactic-co-glycolic acid) nanofibers for guided bone regeneration membrane. Composites Science and Technology, 2013, 79, 8-14.	3.8	61
261	Combretastatin A4 Nanoparticles Combined with Hypoxia-Sensitive Imiquimod: A New Paradigm for the Modulation of Host Immunological Responses during Cancer Treatment. Nano Letters, 2019, 19, 8021-8031.	4.5	61
262	Structural characteristics and thermal properties of plasticized poly(l-lactide)-silica nanocomposites synthesized by sol–gel method. Materials Letters, 2007, 61, 2683-2686.	1.3	60
263	Synthesis of Amphiphilic Alternating Polyesters with Oligo(ethylene glycol) Side Chains and Potential Use for Sustained Release Drug Delivery. Biomacromolecules, 2011, 12, 2466-2474.	2.6	60
264	Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery. Nanotechnology, 2011, 22, 494012.	1.3	60
265	Development of Organic/Inorganic Compatible and Sustainably Bioactive Composites for Effective Bone Regeneration. Biomacromolecules, 2018, 19, 3637-3648.	2.6	60
266	Biopolymer Immune Implants' Sequential Activation of Innate and Adaptive Immunity for Colorectal Cancer Postoperative Immunotherapy. Advanced Materials, 2021, 33, e2004559.	11.1	60
267	Novel temperature†and pHâ€responsive graft copolymers composed of poly(<scp>L</scp> â€glutamic acid) and poly(<i>N</i> â€isopropylacrylamide). Journal of Polymer Science Part A, 2008, 46, 4140-4150.	2.5	59
268	Chirality-mediated polypeptide micelles for regulated drug delivery. Acta Biomaterialia, 2015, 11, 346-355.	4.1	59
269	A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation. Scientific Reports, 2016, 6, 20770.	1.6	59
270	Biofunctionalized composite scaffold to potentiate osteoconduction, angiogenesis, and favorable metabolic microenvironment for osteonecrosis therapy. Bioactive Materials, 2022, 9, 446-460.	8.6	59

#	Article	IF	CITATIONS
271	Strontium-based initiator system for ring-opening polymerization of cyclic esters. Journal of Polymer Science Part A, 2003, 41, 1934-1941.	2.5	58
272	Nonisothermal crystallization behavior of the poly(ethylene glycol) block in poly(L-lactide)–poly(ethylene glycol) diblock copolymers: Effect of the poly(L-lactide) block length. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3215-3226.	2.4	58
273	Crystallization and morphology of poly(ethylene oxideâ€ <i>b< i>â€lactide) crystalline–crystalline diblock copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1400-1411.</i>	2.4	58
274	High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications. Acta Biomaterialia, 2015, 11, 183-190.	4.1	58
275	Injectable Polypeptide Hydrogels with Tunable Microenvironment for 3D Spreading and Chondrogenic Differentiation of Bone-Marrow-Derived Mesenchymal Stem Cells. Biomacromolecules, 2016, 17, 3862-3871.	2.6	58
276	Injectable, Biomolecule-Responsive Polypeptide Hydrogels for Cell Encapsulation and Facile Cell Recovery through Triggered Degradation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30692-30702.	4.0	58
277	Cisplatin Loaded Poly(L-glutamic acid)- <i>g</i> -Methoxy Poly(ethylene glycol) Complex Nanoparticles for Potential Cancer Therapy: Preparation, <i>In Vitro</i> and <i>In Vivo</i> Evaluation. Journal of Biomedical Nanotechnology, 2016, 12, 69-78.	0.5	58
278	PEGylated Poly (\hat{l}_{\pm} -lipoic acid) Loaded with Doxorubicin as a pH and Reduction Dual Responsive Nanomedicine for Breast Cancer Therapy. Biomacromolecules, 2018, 19, 4492-4503.	2.6	58
279	A GSHâ€Gated DNA Nanodevice for Tumorâ€Specific Signal Amplification of microRNA and MR Imaging–Guided Theranostics. Small, 2019, 15, e1903016.	5.2	58
280	Synergistic tumor immunological strategy by combining tumor nanovaccine with gene-mediated extracellular matrix scavenger. Biomaterials, 2020, 252, 120114.	5.7	58
281	Synthesis and characterization of amphiphilic block copolymers with allyl sideâ€groups. Journal of Polymer Science Part A, 2007, 45, 5518-5528.	2.5	57
282	Synthesis and Characterization of Novel Biodegradable Poly(carbonate ester)s with Photolabile Protecting Groups. Biomacromolecules, 2008, 9, 376-380.	2.6	57
283	Biodegradable mPEG-b-P(MCC-g-OEI) copolymers for efficient gene delivery. Journal of Controlled Release, 2011, 152, 135-142.	4.8	57
284	Acid-labile boronate-bridged dextran–bortezomib conjugate with up-regulated hypoxic tumor suppression. Chemical Communications, 2015, 51, 6812-6815.	2.2	57
285	Injectable Polypeptide Hydrogel as Biomimetic Scaffolds with Tunable Bioactivity and Controllable Cell Adhesion. Biomacromolecules, 2017, 18, 1411-1418.	2.6	57
286	Reduction-Responsive Polypeptide Micelles for Intracellular Delivery of Antineoplastic Agent. Biomacromolecules, 2017, 18, 3291-3301.	2.6	57
287	In situ activation of STING pathway with polymeric SN38 for cancer chemoimmunotherapy. Biomaterials, 2021, 268, 120542.	5.7	57
288	Crystallization and Ring-Banded Spherulite Morphology of Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 6 205, 2229-2234.	7 Td (oxid 1.1	e)-block-Poly(56

17

#	Article	IF	Citations
289	Single Crystals of the Poly(l-lactide) Block and the Poly(ethylene glycol) Block in Poly(l-lactide)â^poly(ethylene glycol) Diblock Copolymer. Macromolecules, 2007, 40, 2791-2797.	2.2	56
290	Stabilization of poly(lactic acid) by polycarbodiimide. Polymer Degradation and Stability, 2008, 93, 1923-1929.	2.7	56
291	Redox-Sensitive Shell-Crosslinked Polypeptide <i>-block-</i> - Polysaccharide Micelles for Efficient Intracellular Anticancer Drug Delivery. Macromolecular Bioscience, 2013, 13, 1249-1258.	2.1	56
292	Injectable polysaccharide hybrid hydrogels as scaffolds for burn wound healing. RSC Advances, 2015, 5, 94248-94256.	1.7	56
293	Nanozyme-mediated cascade reaction based on metal-organic framework for synergetic chemo-photodynamic tumor therapy. Journal of Controlled Release, 2020, 328, 631-639.	4.8	56
294	Cystine proportion regulates fate of polypeptide nanogel as nanocarrier for chemotherapeutics. Science China Chemistry, 2021, 64, 293-301.	4.2	56
295	Enhanced endocytosis of acid-sensitive doxorubicin derivatives with intelligent nanogel for improved security and efficacy. Biomaterials Science, 2013, 1, 633-646.	2.6	55
296	Fabrication of poly(l-glutamic acid)/chitosan polyelectrolyte complex porous scaffolds for tissue engineering. Journal of Materials Chemistry B, 2013, 1, 1541.	2.9	55
297	One-pot controllable synthesis of oligo(carbonate-ether) triol using a Zn-Co-DMC catalyst: the special role of trimesic acid as an initiation-transfer agent. Polymer Chemistry, 2014, 5, 6171-6179.	1.9	55
298	Charge-Conversional PEG-Polypeptide Polyionic Complex Nanoparticles from Simple Blending of a Pair of Oppositely Charged Block Copolymers as an Intelligent Vehicle for Efficient Antitumor Drug Delivery. Molecular Pharmaceutics, 2014, 11, 1562-1574.	2.3	55
299	Synergistic effect of PLA–PBAT–PLA tri-block copolymers with two molecular weights as compatibilizers on the mechanical and rheological properties of PLA/PBAT blends. RSC Advances, 2015, 5, 73842-73849.	1.7	55
300	Polylysine-modified polyethylenimine inducing tumor apoptosis as an efficient gene carrier. Journal of Controlled Release, 2013, 172, 410-418.	4.8	54
301	Charge-conversional zwitterionic copolymer as pH-sensitive shielding system for effective tumor treatment. Acta Biomaterialia, 2015, 26, 45-53.	4.1	54
302	Combining disulfiram and poly(l-glutamic acid)-cisplatin conjugates for combating cisplatin resistance. Journal of Controlled Release, 2016, 231, 94-102.	4.8	54
303	Precision-guided long-acting analgesia by hydrogel-immobilized bupivacaine-loaded microsphere. Theranostics, 2018, 8, 3331-3347.	4.6	54
304	Hypoxia-sensitive supramolecular nanogels for the cytosolic delivery of ribonuclease A as a breast cancer therapeutic. Journal of Controlled Release, 2020, 320, 83-95.	4.8	54
305	Synthesis of a novel structural triblock copolymer of poly(\hat{l}^3 -benzyl-l-glutamic acid)-b-poly(ethylene) Tj ETQq $1\ 1\ 0$).784314 5.7	rgBT /Overlo
306	Synthesis and characterization of a novel biodegradable, thermoplastic polyurethane elastomer. Journal of Polymer Science Part A, 2006, 44, 5505-5512.	2.5	53

#	Article	IF	CITATIONS
307	Synthesis of Novel Thermo―and pHâ€Responsive Poly(<scp>L</scp> â€lysine)â€Based Copolymer and its Micellization in Water. Macromolecular Rapid Communications, 2008, 29, 1810-1816.	2.0	53
308	Amphiphilic Coreâ^'Shell Nanocarriers Based On Hyperbranched Poly(ester amide)-star-PCL: Synthesis, Characterization, and Potential as Efficient Phase Transfer Agent. Biomacromolecules, 2008, 9, 2629-2636.	2.6	53
309	Core-cross-linked micellar nanoparticles from a linear-dendritic prodrug for dual-responsive drug delivery. Polymer Chemistry, 2014, 5, 2801-2808.	1.9	53
310	Coadministration of Vascular Disrupting Agents and Nanomedicines to Eradicate Tumors from Peripheral and Central Regions. Small, 2015, 11, 3755-3761.	5.2	53
311	Evaluation of Polymer Nanoformulations in Hepatoma Therapy by Established Rodent Models. Theranostics, 2019, 9, 1426-1452.	4.6	53
312	Synthesis and characterization of functional poly(\hat{l}^3 -benzyl-l-glutamate) (PBLG) as a hydrophobic precursor. Polymer, 2009, 50, 2847-2855.	1.8	52
313	Synthesis of pH-responsive starch nanoparticles grafted poly (l-glutamic acid) for insulin controlled release. European Polymer Journal, 2013, 49, 2082-2091.	2.6	52
314	Competitive binding-accelerated insulin release from a polypeptide nanogel for potential therapy of diabetes. Polymer Chemistry, 2015, 6, 3807-3815.	1.9	52
315	CO ₂ Controlled Catalysis: Switchable Homopolymerization and Copolymerization. Macromolecules, 2018, 51, 4699-4704.	2.2	52
316	Functional Polymerâ€Based Nerve Guide Conduits to Promote Peripheral Nerve Regeneration. Advanced Materials Interfaces, 2020, 7, 2000225.	1.9	52
317	Self-Assembly of Polypeptide-Containing ABC-Type Triblock Copolymers in Aqueous Solution and Its pH Dependence. Biomacromolecules, 2007, 8, 1013-1017.	2.6	51
318	Reduction-responsive cross-linked micelles based on PEGylated polypeptides prepared via click chemistry. Polymer Chemistry, 2013, 4, 3851.	1.9	51
319	Linear and fourâ€armed poly(<scp> </scp> â€lactide)â€ <i>block</i> â€poly(<scp>d</scp> â€lactide) copolymers ar their stereocomplexation with poly(lactide)s. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1560-1567.	nd 2.4	51
320	Efficient PD-L1 gene silence promoted by hyaluronidase for cancer immunotherapy. Journal of Controlled Release, 2019, 293, 104-112.	4.8	51
321	Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioactive Materials, 2022, 11, 317-338.	8.6	51
322	Tunable pHâ€Sensitive Poly(<i>i²</i> â€amino ester)s Synthesized from Primary Amines and Diacrylates for Intracellular Drug Delivery. Macromolecular Bioscience, 2012, 12, 1375-1383.	2.1	50
323	Melt stereocomplexation from poly(l-lactic acid) and poly(d-lactic acid) with different optical purity. Polymer Degradation and Stability, 2013, 98, 844-852.	2.7	50
324	Simultaneously Photoâ€Cleavable and Activatable Prodrugâ€Backboned Block Copolymer Micelles for Precise Anticancer Drug Delivery. Advanced Healthcare Materials, 2016, 5, 2493-2499.	3.9	50

#	Article	IF	Citations
325	Novel aliphatic poly(esterâ€carbonate) with pendant allyl ester groups and its folic acid functionalization. Journal of Polymer Science Part A, 2008, 46, 1852-1861.	2.5	49
326	Preparation and Characterization of Biodegradable and Electroactive Polymer Blend Materials Based on mPEG/Tetraaniline and PLLA. Macromolecular Bioscience, 2011, 11, 806-813.	2.1	49
327	Zinc complexes containing asymmetrical N,N,O-tridentate ligands and their application in lactide polymerization. Dalton Transactions, 2013, 42, 16334.	1.6	49
328	New chemosynthetic route to linear $\hat{l}\mu$ -poly-lysine. Chemical Science, 2015, 6, 6385-6391.	3.7	49
329	High Melt Strength and High Toughness PLLA/PBS Blends by Copolymerization and in Situ Reactive Compatibilization. Industrial & Engineering Chemistry Research, 2017, 56, 52-62.	1.8	49
330	A ROS-Responsive Aspirin Polymeric Prodrug for Modulation of Tumor Microenvironment and Cancer Immunotherapy. CCS Chemistry, 2020, 2, 390-400.	4.6	49
331	Preparation of block copolymer of É>-caprolactone and 2-methyl-2-carboxyl-propylene carbonate. Polymer, 2005, 46, 2817-2824.	1.8	48
332	Oxygen Carrier Based on Hemoglobin/Poly(<scp>l</scp> -lysine)- <i>block</i> -poly(<scp>l</scp> -phenylalanine) Vesicles. Langmuir, 2009, 25, 13726-13729.	1.6	48
333	Gold-Nanorods-Based Gene Carriers with the Capability of Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31558-31566.	4.0	48
334	Synthesis of a phenylboronic ester-linked PEG-lipid conjugate for ROS-responsive drug delivery. Polymer Chemistry, 2017, 8, 6209-6216.	1.9	48
335	Advances in Stimuliâ€Responsive Polypeptide Nanogels. Small Methods, 2018, 2, 1700307.	4.6	48
336	Controlled and stereospecific polymerization ofrac-lactide with a single-site ethyl aluminum and alcohol initiating system. Journal of Applied Polymer Science, 2005, 98, 102-108.	1.3	47
337	Shape memory effect of poly(L-lactide)- based polyurethanes with different hard segments. Polymer International, 2007, 56, 840-846.	1.6	47
338	Aliphatic poly(esterâ€carbonate)s bearing amino groups and its RGD peptide grafting. Journal of Polymer Science Part A, 2008, 46, 7022-7032.	2.5	47
339	Multiâ€armed poly(<scp>L</scp> â€glutamic acid)â€graftâ€oligoethylenimine copolymers as efficient nonviral gene delivery vectors. Journal of Gene Medicine, 2010, 12, 64-76.	1.4	47
340	One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy. Carbohydrate Polymers, 2016, 144, 223-229.	5.1	47
341	Drug binding rate regulates the properties of polysaccharide prodrugs. Journal of Materials Chemistry B, 2016, 4, 5167-5177.	2.9	47
342	Intracellularly Swollen Polypeptide Nanogel Assists Hepatoma Chemotherapy. Theranostics, 2017, 7, 703-716.	4.6	47

#	Article	IF	CITATIONS
343	Alternating copolymerization of carbon dioxide and propylene oxide catalyzed by (R,) Tj ETQq1 1 0.784314 rgBT Part A, 2007, 45, 5050-5056.	/Overlock 2.5	10 Tf 50 7 <mark>47</mark> 46
344	Biodegradable Interpolyelectrolyte Complexes Based on Methoxy Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 702	Td (glycol)- <i< td=""></i<>
345	Insulin nanoparticle preparation and encapsulation into poly(lactic-co-glycolic acid) microspheres by using an anhydrous system. International Journal of Pharmaceutics, 2009, 378, 159-166.	2.6	46
346	Hemoglobin conjugated micelles based on triblock biodegradable polymers as artificial oxygen carriers. Biomaterials, 2009, 30, 5077-5085.	5 . 7	46
347	New bio-renewable polyester with rich side amino groups from <scp>l</scp> -lysine via controlled ring-opening polymerization. Polymer Chemistry, 2014, 5, 6495-6502.	1.9	46
348	A Novel Nano/Micro-Fibrous Scaffold by Melt-Spinning Method for Bone Tissue Engineering. Journal of Bionic Engineering, 2015, 12, 117-128.	2.7	46
349	Cisplatin-loaded polymeric nanoparticles: Characterization and potential exploitation for the treatment of non-small cell lung carcinoma. Acta Biomaterialia, 2015, 18, 68-76.	4.1	46
350	A cooperative polymeric platform for tumor-targeted drug delivery. Chemical Science, 2016, 7, 728-736.	3.7	46
351	pH and redox dual-sensitive polysaccharide nanoparticles for the efficient delivery of doxorubicin. Biomaterials Science, 2017, 5, 2169-2178.	2.6	46
352	PI3Kgamma Inhibitor Attenuates Immunosuppressive Effect of Poly(<scp>l</scp> â€Glutamic) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 382
353	One-Pot Synthesis of Diblock Polyesters by Catalytic Terpolymerization of Lactide, Epoxides, and Anhydrides. Macromolecules, 2019, 52, 3462-3470.	2.2	46
354	X-ray-responsive polypeptide nanogel for concurrent chemoradiotherapy. Journal of Controlled Release, 2021, 332, 1-9.	4.8	46
355	Combining mannose receptor mediated nanovaccines and gene regulated PD-L1 blockade for boosting cancer immunotherapy. Bioactive Materials, 2022, 7, 167-180.	8.6	46
356	Polypeptide Modification of Multiwalled Carbon Nanotubes by a Graft-From Approach. Macromolecular Rapid Communications, 2006, 27, 2019-2025.	2.0	45
357	RGD peptide grafted biodegradable amphiphilic triblock copolymer poly(glutamic) Tj ETQq1 1 0.784314 rgBT /Ov Part A, 2007, 45, 3218-3230.	verlock 10° 2.5	Tf 50 187 Td 45
358	Synthesis and Stabilization of Novel Aliphatic Polycarbonate from Renewable Resource. Macromolecules, 2009, 42, 9251-9254.	2.2	45
359	Preparation of Mesoporous Nano-Hydroxyapatite Using a Surfactant Template Method for Protein Delivery. Journal of Bionic Engineering, 2012, 9, 224-233.	2.7	45
360	Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo. Nature Communications, 2021, 12, 6742.	5.8	45

#	Article	IF	CITATIONS
361	Controllable synthesis of a narrow polydispersity CO ₂ -based oligo(carbonate-ether) tetraol. Polymer Chemistry, 2015, 6, 7580-7585.	1.9	44
362	pH- and Amylase-Responsive Carboxymethyl Starch/Poly(2-isobutyl-acrylic acid) Hybrid Microgels as Effective Enteric Carriers for Oral Insulin Delivery. Biomacromolecules, 2018, 19, 2123-2136.	2.6	44
363	An eximious and affordable GSH stimulus-responsive poly ($\hat{l}\pm$ -lipoic acid) nanocarrier bonding combretastatin A4 for tumor therapy. Biomaterials Science, 2019, 7, 2803-2811.	2.6	44
364	A Minimalist Binary Vaccine Carrier for Personalized Postoperative Cancer Vaccine Therapy. Advanced Materials, 2022, 34, e2109254.	11.1	44
365	Amphiphilic Polycarbonates from Carborane-Installed Cyclic Carbonates as Potential Agents for Boron Neutron Capture Therapy. Bioconjugate Chemistry, 2016, 27, 2214-2223.	1.8	43
366	Aluminum Schiff base catalysts derived from \hat{l}^2 -diketone for the stereoselective polymerization of racemic lactides. Journal of Polymer Science Part A, 2005, 43, 6605-6612.	2.5	42
367	Surface Modification of Hydroxyapatite Nanoparticles with Thermalâ€Responsive PNIPAM by ATRP. Macromolecular Bioscience, 2009, 9, 1237-1246.	2.1	42
368	Polymeric topology and composition constrained polyether–polyester micelles for directional antitumor drug delivery. Acta Biomaterialia, 2013, 9, 8875-8884.	4.1	42
369	Emerging antitumor applications of extracellularly reengineered polymeric nanocarriers. Biomaterials Science, 2015, 3, 988-1001.	2.6	42
370	Single-Stimulus Dual-Drug Sensitive Nanoplatform for Enhanced Photoactivated Therapy. Biomacromolecules, 2016, 17, 2120-2127.	2.6	42
371	Immunologically Effective Biomaterials. ACS Applied Materials & Samp; Interfaces, 2021, 13, 56719-56724.	4.0	42
372	Versatile Polymerâ€Initiating Biomineralization for Tumor Blockade Therapy. Advanced Materials, 2022, 34, e2110094.	11.1	42
373	Probing the micellization of diblock and triblock copolymers of poly(l-lactide) and poly(ethylene) Tj ETQq1 1 0.784	1314 rgBT 1.0	/Qverlock 1
374	Formation of Flower- or Cake-Shaped Stereocomplex Particles from the Stereo Multiblock Copoly(rac-lactide)s. Biomacromolecules, 2005, 6, 2843-2850.	2.6	41
375	Novel Biodegradable and pH‧ensitive Poly(ester amide) Microspheres for Oral Insulin Delivery. Macromolecular Bioscience, 2012, 12, 547-556.	2.1	41
376	Efficient recovery of precious metal based on Au–S bond and electrostatic interaction. Green Chemistry, 2014, 16, 4875-4878.	4.6	41
377	pH-responsive metallo-supramolecular nanogel for synergistic chemo-photodynamic therapy. Acta Biomaterialia, 2015, 25, 162-171.	4.1	41
378	Reinforced electrospun PLLA fiber membrane via chemical crosslinking. European Polymer Journal, 2016, 74, 101-108.	2.6	41

#	Article	IF	CITATIONS
379	Acid-sensitive dextran prodrug: A higher molecular weight makes a better efficacy. Carbohydrate Polymers, 2017, 161, 33-41.	5.1	41
380	Inhibiting Solid Tumor Growth In Vivo by Nonâ€Tumorâ€Penetrating Nanomedicine. Small, 2017, 13, 1600954.	5.2	41
381	Prodrug-Based Versatile Nanomedicine with Simultaneous Physical and Physiological Tumor Penetration for Enhanced Cancer Chemo-Immunotherapy. Nano Letters, 2021, 21, 3721-3730.	4.5	41
382	Enolic Schiff-base aluminum complexes and their application in lactide polymerization. Journal of Organometallic Chemistry, 2007, 692, 5605-5613.	0.8	40
383	Biodegradable poly(carbonateâ€ether)s with thermoresponsive feature at body temperature. Journal of Polymer Science Part A, 2013, 51, 282-289.	2.5	40
384	A polypeptide based podophyllotoxin conjugate for the treatment of multi drug resistant breast cancer with enhanced efficiency and minimal toxicity. Acta Biomaterialia, 2018, 73, 388-399.	4.1	40
385	lonic-crosslinked polysaccharide/PEI/DNA nanoparticles for stabilized gene delivery. Carbohydrate Polymers, 2018, 201, 246-256.	5.1	40
386	Tumor microenvironment as the "regulator―and "target―for gene therapy. Journal of Gene Medicine, 2019, 21, e3088.	1.4	40
387	LHRH-peptide conjugated dextran nanoparticles for targeted delivery of cisplatin to breast cancer. Journal of Materials Chemistry B, 2014, 2, 3490.	2.9	39
388	Crystallization behavior of PEG/PLLA block copolymers: Effect of the different architectures and molecular weights. Polymer, 2015, 62, 70-76.	1.8	39
389	Comprehensive studies of pharmacokinetics and biodistribution of indocyanine green and liposomal indocyanine green by multispectral optoacoustic tomography. RSC Advances, 2015, 5, 3807-3813.	1.7	39
390	Polylysine-modified polyethylenimine (PEI-PLL) mediated VEGF gene delivery protects dopaminergic neurons in cell culture and in rat models of Parkinson's Disease (PD). Acta Biomaterialia, 2017, 54, 58-68.	4.1	39
391	Conjugated tri-nuclear salen-Co complexes for the copolymerization of epoxides/CO ₂ : cocatalyst-free catalysis. Green Chemistry, 2019, 21, 4723-4731.	4.6	39
392	Stimuli-responsive polypeptides for controlled drug delivery. Chemical Communications, 2021, 57, 9489-9503.	2.2	39
393	A Cationic Metal–Organic Framework to Scavenge Cell-Free DNA for Severe Sepsis Management. Nano Letters, 2021, 21, 2461-2469.	4.5	39
394	Polypeptides–Drug Conjugates for Anticancer Therapy. Advanced Healthcare Materials, 2021, 10, e2001974.	3.9	39
395	The crystallization behavior of poly(ethylene glycol)-poly($\hat{l}\mu$ -caprolactone) diblock copolymers with asymmetric block compositions. Journal of Polymer Research, 2011, 18, 2161-2168.	1.2	38
396	Nanoâ€hydroxyapatite Surfaces Grafted with Electroactive Aniline Tetramers for Boneâ€Tissue Engineering. Macromolecular Bioscience, 2013, 13, 356-365.	2.1	38

#	Article	IF	Citations
397	A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: Preparation, in vitro and in vivo evaluation. International Journal of Pharmaceutics, 2014, 471, 412-420.	2.6	38
398	The suppression of metastatic lung cancer by pulmonary administration of polymer nanoparticles for co-delivery of doxorubicin and Survivin siRNA. Biomaterials Science, 2016, 4, 1646-1654.	2.6	38
399	Recent progress in cationic polymeric gene carriers for cancer therapy. Science China Chemistry, 2017, 60, 319-328.	4.2	38
400	Polymer-Mediated Penetration-Independent Cancer Therapy. Biomacromolecules, 2019, 20, 4258-4271.	2.6	38
401	Hierarchical supramolecular assembly of a single peptoid polymer into a planar nanobrush with two distinct molecular packing motifs. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31639-31647.	3.3	38
402	Triblock poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid)/paclitaxel conjugates: Synthesis, micellization, and cytotoxicity. Journal of Applied Polymer Science, 2007, 105, 2271-2279.	1.3	37
403	PEI Conjugated Gold Nanoparticles: Efficient Gene Carriers with Visible Fluorescence. Advanced Healthcare Materials, 2012, 1, 337-341.	3.9	37
404	Polypeptide/Doxorubicin Hydrochloride Polymersomes Prepared Through Organic Solvent-free Technique as a Smart Drug Delivery Platform. Macromolecular Bioscience, 2013, 13, 1150-1162.	2.1	37
405	In situ preparation of magnetic Fe3O4 nanoparticles inside nanoporous poly(l-glutamic acid)/chitosan microcapsules for drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 113, 302-311.	2.5	37
406	Characterization of nanostructured ureteral stent with gradient degradation in a porcine model. International Journal of Nanomedicine, 2015, 10, 3055.	3.3	37
407	Enhanced local cancer therapy using a CA4P and CDDP co-loaded polypeptide gel depot. Biomaterials Science, 2019, 7, 860-866.	2.6	37
408	Self-Switchable Polymerization: A Smart Approach to Sequence-Controlled Degradable Copolymers. Macromolecules, 2022, 55, 1879-1893.	2.2	37
409	Isothermal crystallization behavior of poly(<scp>L</scp> â€lactic acid)/organoâ€montmorillonite nanocomposites. Polymer Composites, 2009, 30, 1338-1344.	2.3	36
410	Cinnamateâ€functionalized poly(esterâ€carbonate): Synthesis and its UV irradiationâ€induced photoâ€crosslinking. Journal of Polymer Science Part A, 2009, 47, 161-169.	2.5	36
411	Modulation of Osteogenesis in MC3T3-E1 Cells by Different Frequency Electrical Stimulation. PLoS ONE, 2016, 11, e0154924.	1.1	36
412	A chitin film containing basic fibroblast growth factor with a chitin-binding domain as wound dressings. Carbohydrate Polymers, 2017, 174, 723-730.	5.1	36
413	Two-dimensional nanosheets with high curcumin loading content for multimodal imaging-guided combined chemo-photothermal therapy. Biomaterials, 2019, 223, 119470.	5.7	36
414	Monomer Controlled Switchable Copolymerization: A Feasible Route for the Functionalization of Poly(lactide). Angewandte Chemie - International Edition, 2021, 60, 9274-9278.	7.2	36

#	Article	IF	CITATIONS
415	Precise regulation of inflammation and immunosuppressive microenvironment for amplified photothermal/immunotherapy against tumour recurrence and metastasis. Nano Today, 2021, 40, 101266.	6.2	36
416	Synthesis of four-armed poly($\hat{l}\mu$ -caprolactone)-block -poly(ethylene oxide) by diethylzinc catalyst. Journal of Polymer Science Part A, 2004, 42, 950-959.	2.5	35
417	Synthesis of a Novel Electroactive ABA Triblock Copolymer and its Spontaneous Selfâ€Assembly in Water. Macromolecular Rapid Communications, 2007, 28, 1559-1566.	2.0	35
418	Synthesis and characterization of novel poly(ester carbonate)s based on pentaerythritol. Journal of Polymer Science Part A, 2007, 45, 1737-1745.	2.5	35
419	Nanoporous multilayer poly(l-glutamic acid)/chitosan microcapsules for drug delivery. International Journal of Pharmaceutics, 2012, 427, 443-451.	2.6	35
420	Enhanced in Vitro Mineralization and in Vivo Osteogenesis of Composite Scaffolds through Controlled Surface Grafting of <scp>l</scp> -Lactic Acid Oligomer on Nanohydroxyapatite. Biomacromolecules, 2016, 17, 818-829.	2.6	35
421	Photothermal Effect-Triggered Drug Release from Hydrogen Bonding-Enhanced Polymeric Micelles. Biomacromolecules, 2018, 19, 1950-1958.	2.6	35
422	In situ dual-crosslinked nanoparticles for tumor targeting gene delivery. Acta Biomaterialia, 2018, 65, 349-362.	4.1	35
423	Dual Stimuli-Responsive Nanoparticle-Incorporated Hydrogels as an Oral Insulin Carrier for Intestine-Targeted Delivery and Enhanced Paracellular Permeation. ACS Biomaterials Science and Engineering, 2018, 4, 2889-2902.	2.6	35
424	Exploration of Fe ^{III} -Phenol Complexes for Photothermal Therapy and Photoacoustic Imaging. ACS Biomaterials Science and Engineering, 2019, 5, 4700-4707.	2.6	35
425	Tissue Engineering: Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering (Adv. Funct.) Tj ETQq $1\ 1$	0.784314 7.8	rgBŢ/Overloc
426	Breaking the Si/Al Limit of Nanosized \hat{l}^2 Zeolites: Promoting Catalytic Production of Lactide. Chemistry of Materials, 2020, 32, 751-758.	3.2	35
427	Synergistically Enhanced Mucoadhesive and Penetrable Polypeptide Nanogel for Efficient Drug Delivery to Orthotopic Bladder Cancer. Research, 2020, 2020, 8970135.	2.8	35
428	Biodegradable polyurethane based on random copolymer of L-lactide and $\hat{l}\mu$ -caprolactone and its shape-memory property. Journal of Applied Polymer Science, 2007, 104, 4182-4187.	1.3	34
429	Alternating Copolymerization of Carbon Dioxide and Propylene Oxide Catalyzed by Cobalt Schiff Base Complex. Macromolecular Chemistry and Physics, 2009, 210, 1224-1229.	1.1	34
430	Porous Scaffolds Based on Crossâ€Linking of Poly(<scp>L</scp> â€glutamic acid). Macromolecular Bioscience, 2011, 11, 427-434.	2.1	34
431	Cisplatin Loaded Methoxy Poly (ethylene glycol)- <i>block</i> -Poly (<scp>L</scp> -glutamic) Tj ETQq1 1 0.784 Macromolecular Bioscience, 2014, 14, 1337-1345.	314 rgBT /0 2.1	Overlock 10 Ti 34
432	Methoxy poly (ethylene glycol)- <i>block</i> poly (glutamic acid)- <i>graft</i> -6-(2-nitroimidazole) hexyl amine nanoparticles for potential hypoxia-responsive delivery of doxorubicin. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 40-54.	1.9	34

#	Article	IF	CITATIONS
433	Injectable Polysaccharide Hydrogels as Biocompatible Platforms for Localized and Sustained Delivery of Antibiotics for Preventing Local Infections. Macromolecular Bioscience, 2017, 17, 1600347.	2.1	34
434	One-Step Synthesis of Targeted Acid-Labile Polysaccharide Prodrug for Efficiently Intracellular Drug Delivery. ACS Biomaterials Science and Engineering, 2018, 4, 539-546.	2.6	34
435	Pyrolysis mechanism of Poly(lactic acid) for giving lactide under the catalysis of tin. Polymer Degradation and Stability, 2018, 157, 212-223.	2.7	34
436	Multiantigenic Nanoformulations Activate Anticancer Immunity Depending on Size. Advanced Functional Materials, 2019, 29, 1903391.	7.8	34
437	Injectable Hydrogels as Local Depots at Tumor Sites for Antitumor Immunotherapy and Immuneâ€Based Combination Therapy. Macromolecular Bioscience, 2021, 21, e2100039.	2.1	34
438	Polyelectrolyte complexes based on chitosan and poly(L-glutamic acid). Polymer International, 2007, 56, 1122-1127.	1.6	33
439	Preparation of nano-hydroxyapatite/poly(l-lactide) biocomposite microspheres. Journal of Nanoparticle Research, 2007, 9, 901-908.	0.8	33
440	Synthesis of amphiphilic block copolymers bearing stable nitroxyl radicals. Journal of Polymer Science Part A, 2010, 48, 5404-5410.	2.5	33
441	pH and dual redox responsive nanogel based on poly(l -glutamic acid) as potential intracellular drug carrier. Journal of Controlled Release, 2011, 152, e11-e13.	4.8	33
442	Hydrophobic Polyphenylalanineâ€Grafted Hyperbranched Polyethylenimine and its in vitro Gene Transfection. Macromolecular Bioscience, 2011, 11, 211-218.	2.1	33
443	Synergistic Antitumor Effects of Doxorubicinâ€Loaded Carboxymethyl Cellulose Nanoparticle in Combination with Endostar for Effective Treatment of Nonâ€Smallâ€Cell Lung Cancer. Advanced Healthcare Materials, 2014, 3, 1877-1888.	3.9	33
444	Intercellular pH-responsive histidine modified dextran-g-cholesterol micelle for anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 121, 36-43.	2.5	33
445	Gelatin Tight-Coated Poly(lactide-co-glycolide) Scaffold Incorporating rhBMP-2 for Bone Tissue Engineering. Materials, 2015, 8, 1009-1026.	1.3	33
446	Compatibility, mechanical properties and stability of blends of polylactide and polyurethane based on poly(ethylene glycol)-b-polylactide copolymers by chain extension with diisocyanate. Polymer Degradation and Stability, 2016, 125, 148-155.	2.7	33
447	Bimetallic Schiff base complexes for stereoselective polymerisation of racemic-lactide and copolymerisation of racemic-lactide with $\hat{l}\mu$ -caprolactone. RSC Advances, 2016, 6, 17531-17538.	1.7	33
448	Peptide-Based and Polypeptide-Based Gene Delivery Systems. Topics in Current Chemistry, 2017, 375, 32.	3.0	33
449	Injectable Thermosensitive Polypeptide-Based CDDP-Complexed Hydrogel for Improving Localized Antitumor Efficacy. Biomacromolecules, 2017, 18, 4341-4348.	2.6	33
450	Co-administration of combretastatin A4 nanoparticles and sorafenib for systemic therapy of hepatocellular carcinoma. Acta Biomaterialia, 2019, 92, 229-240.	4.1	33

#	Article	IF	CITATIONS
451	Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect. Advanced Drug Delivery Reviews, 2022, 183, 114138.	6.6	33
452	Mannan-decorated pathogen-like polymeric nanoparticles as nanovaccine carriers for eliciting superior anticancer immunity. Biomaterials, 2022, 284, 121489.	5.7	33
453	Novel biodegradable poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate) copolymers: Synthesis, characterization, and micellization. Polymer, 2005, 46, 10523-10530.	1.8	32
454	The immobilization of proteins on biodegradable fibers via biotin–streptavidin bridges. Acta Biomaterialia, 2008, 4, 1770-1777.	4.1	32
455	Cationic Dendron-Bearing Lipids: Investigating Structure–Activity Relationships for Small Interfering RNA Delivery. Biomacromolecules, 2013, 14, 4289-4300.	2.6	32
456	Acetalated-dextran as valves of mesoporous silica particles for pH responsive intracellular drug delivery. RSC Advances, 2015, 5, 9546-9555.	1.7	32
457	A charge-conversional intracellular-activated polymeric prodrug for tumor therapy. Polymer Chemistry, 2016, 7, 2253-2263.	1.9	32
458	Degradable Three Dimensional-Printed Polylactic Acid Scaffold with Long-Term Antibacterial Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 2047-2054.	3.2	32
459	Polylysine-modified polyethylenimine polymer can generate genetically engineered mesenchymal stem cells for combinational suicidal gene therapy in glioblastoma. Acta Biomaterialia, 2018, 80, 144-153.	4.1	32
460	The effect of PLGA-based hydrogel scaffold for improving the drug maximum-tolerated dose for in situ osteosarcoma treatment. Colloids and Surfaces B: Biointerfaces, 2018, 172, 387-394.	2.5	32
461	A fast and versatile cross-linking strategy via <i>o</i> -phthalaldehyde condensation for mechanically strengthened and functional hydrogels. National Science Review, 2021, 8, nwaa128.	4.6	32
462	Crownâ€like macrocycle zinc complex derived from βâ€diketone ligand for the polymerization of racâ€lactide. Journal of Polymer Science Part A, 2008, 46, 643-649.	2.5	31
463	A Highly Efficient siRNA Carrier of PBLG Modified Hyperbranched PEI. Macromolecular Bioscience, 2009, 9, 1247-1253.	2.1	31
464	Biodegradable thermo―and pHâ€responsive hydrogels for oral drug delivery. Journal of Polymer Science Part A, 2011, 49, 2941-2951.	2.5	31
465	Apatite-forming ability of bioactive poly(l-lactic acid)/grafted silica nanocomposites in simulated body fluid. Colloids and Surfaces B: Biointerfaces, 2011, 86, 218-224.	2.5	31
466	<i>N</i> â€lsopropylacrylamideâ€Modified Polyethylenimines as Effective Gene Carriers. Macromolecular Bioscience, 2012, 12, 1680-1688.	2.1	31
467	Poly(ester amide) blend microspheres for oral insulin delivery. International Journal of Pharmaceutics, 2013, 455, 259-266.	2.6	31
468	Bimetallic Schiff-base aluminum complexes based on pentaerythrityl tetramine and their stereoselective polymerization of racemic lactide. RSC Advances, 2014, 4, 22561.	1.7	31

#	Article	IF	CITATIONS
469	Double pH-responsive supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases and acetalated dextran for drug delivery. Polymer Chemistry, 2015, 6, 3625-3633.	1.9	31
470	Thermogel-mediated sustained drug delivery for in situ malignancy chemotherapy. Materials Science and Engineering C, 2015, 49, 262-268.	3.8	31
471	Cholesterol-Enhanced Polylactide-Based Stereocomplex Micelle for Effective Delivery of Doxorubicin. Materials, 2015, 8, 216-230.	1.3	31
472	A Strategy of Killing Three Birds with One Stone for Cancer Therapy through Regulating the Tumor Microenvironment by H ₂ O ₂ Responsive Gene Delivery System. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47785-47797.	4.0	31
473	Thermal Properties and Structural Evolution of Poly(<scp>l</scp> -lactide)/Poly(<scp>d</scp> -lactide) Blends. Macromolecules, 2021, 54, 10163-10176.	2.2	31
474	Advanced biosafety materials for prevention and theranostics of biosafety issues. Biosafety and Health, 2022, 4, 59-60.	1.2	31
475	Direct formation of cationic polypeptide vesicle as potential carrier for drug and gene. Materials Letters, 2012, 73, 17-20.	1.3	30
476	Dimeric camptothecin-loaded RGD-modified targeted cationic polypeptide-based micelles with high drug loading capacity and redox-responsive drug release capability. Biomaterials Science, 2017, 5, 2501-2510.	2.6	30
477	pH-responsive drug delivery systems based on clickable poly(L-glutamic acid)-grafted comb copolymers. Macromolecular Research, 2012, 20, 292-301.	1.0	29
478	Synthesis and characterization of biodegradable pH-sensitive poly(acrylic acid) hydrogels crosslinked by 2-hydroxyethyl methacrylate modified poly(L-glutamic acid). Materials Letters, 2012, 77, 74-77.	1.3	29
479	pHâ€Responsive Reversible PEGylation Improves Performance of Antineoplastic Agent. Advanced Healthcare Materials, 2015, 4, 844-855.	3.9	29
480	Intracellular pH-responsive mesoporous hydroxyapatite nanoparticles for targeted release of anticancer drug. RSC Advances, 2015, 5, 30920-30928.	1.7	29
481	Intra-Articular Transplantation of Allogeneic BMMSCs Rehabilitates Cartilage Injury of Antigen-Induced Arthritis. Tissue Engineering - Part A, 2015, 21, 2733-2743.	1.6	29
482	Targeting dual gene delivery nanoparticles overcomes immune checkpoint blockade induced adaptive resistance and regulates tumor microenvironment for improved tumor immunotherapy. Nano Today, 2021, 38, 101194.	6.2	29
483	Electrospinning of multicomponent ultrathin fibrous nonwovens for semiâ€occlusive wound dressings. Journal of Biomedical Materials Research - Part A, 2009, 89A, 345-354.	2.1	28
484	Synthesis and self-assembly of a novel Y-shaped copolymer with a helical polypeptide arm. Polymer, 2009, 50, 455-461.	1.8	28
485	Carbon dioxide/propylene oxide coupling reaction catalyzed by chromium salen complexes. Polymer, 2009, 50, 441-446.	1.8	28
486	Thermal and pH responsive high molecular weight poly(urethaneâ€amine) with high urethane content. Journal of Polymer Science Part A, 2011, 49, 5162-5168.	2.5	28

#	Article	IF	CITATIONS
487	The formation and transition behaviors of the mesophase in poly(d-lactide)/poly(l-lactide) blends with low molecular weights. CrystEngComm, 2013, 15, 6469.	1.3	28
488	Mechanical, aging, optical and rheological properties of toughening polylactide by melt blending with poly(ethylene glycol) based copolymers. Polymer Degradation and Stability, 2013, 98, 1591-1600.	2.7	28
489	Crystallization behavior and crystallite morphology control of poly(<scp>L</scp> â€lactic acid) through <i>N</i> , <i>N</i> ′â€bis(benzoyl)sebacic acid dihydrazide. Polymer International, 2013, 62, 647-657.	1.6	28
490	Selfâ€ <scp>A</scp> ssemblies of p <scp>H</scp> â€ <scp>A</scp> ctivatable <scp>PEG</scp> ylated Multiarm Poly(lactic acidâ€ <i>co</i> â€glycolic acid)â€ <scp>D</scp> oxorubicin Prodrugs with Improved Longâ€ <scp>T</scp> erm Antitumor Efficacies. Macromolecular Bioscience, 2013, 13, 1300-1307.	2.1	28
491	Highly Fluorescent Gene Carrier Based on Ag–Au Alloy Nanoclusters. Macromolecular Bioscience, 2016, 16, 160-167.	2.1	28
492	Macrophages loaded CpG and GNR-PEI for combination of tumor photothermal therapy and immunotherapy. Science China Materials, 2018, 61, 1484-1494.	3.5	28
493	Effective Eradication of Tumors by Enhancing Photoacousticâ€Imagingâ€Guided Combined Photothermal Therapy and Ultrasonic Therapy. Advanced Functional Materials, 2021, 31, 2009314.	7.8	28
494	Biodegradable Amphiphilic Triblock Copolymer Bearing Pendant Glucose Residues:Â Preparation and Specific Interaction with Concanavalin A Molecules. Biomacromolecules, 2006, 7, 1806-1810.	2.6	27
495	Synthesis and characterization of half-salen complexes and their application in the polymerization of lactide and $\hat{l}\mu$ -caprolactone. Polymer Chemistry, 2014, 5, 6857-6864.	1.9	27
496	Nanotherapeutics for Immuno-Oncology: A Crossroad for New Paradigms. Trends in Cancer, 2020, 6, 288-298.	3.8	27
497	Regioâ€regular structure high molecular weight poly(propylene carbonate) by rare earth ternary catalyst and Lewis base cocatalyst. Journal of Polymer Science Part A, 2008, 46, 4451-4458.	2.5	26
498	Selfâ€Assembly of a Hydrophobic Polypeptide Containing a Short Hydrophilic Middle Segment: Vesicles to Large Compound Micelles. Macromolecular Chemistry and Physics, 2008, 209, 1129-1136.	1.1	26
499	Synthesis and characterization of a pH-sensitive shielding system for polycation gene carriers. Science China Chemistry, 2010, 53, 502-507.	4.2	26
500	Synthesis of temperature and pH-responsive crosslinked micelles from polypeptide-based graft copolymer. Journal of Colloid and Interface Science, 2011, 359, 436-442.	5.0	26
501	The nucleation effect of N,N′-bis(benzoyl) alkyl diacid dihydrazides on crystallization of biodegradable poly(l-lactic acid). Iranian Polymer Journal (English Edition), 2012, 21, 435-444.	1.3	26
502	The synthesis, deprotection and properties of poly(\hat{l}^3 -benzyl-l-glutamate). Science China Chemistry, 2013, 56, 729-738.	4.2	26
503	ERK1/2 Pathway-Mediated Differentiation of IGF-1-Transfected Spinal Cord-Derived Neural Stem Cells into Oligodendrocytes. PLoS ONE, 2014, 9, e106038.	1.1	26
504	Co-delivery of doxorubicin and paclitaxel with linear-dendritic block copolymer for enhanced anti-cancer efficacy. Science China Chemistry, 2014, 57, 624-632.	4.2	26

#	Article	IF	Citations
505	Gold Nanoparticles for Cancer Theranostics. Chinese Journal of Chemistry, 2015, 33, 1001-1010.	2.6	26
506	Unusual crystallization and melting behavior induced by microphase separation in MPEG-b-PLLA diblock copolymer. Polymer, 2015, 80, 123-129.	1.8	26
507	Self-Targeted Polysaccharide Prodrug Suppresses Orthotopic Hepatoma. Molecular Pharmaceutics, 2016, 13, 4231-4235.	2.3	26
508	Dual acid-responsive supramolecular nanoparticles as new anticancer drug delivery systems. Biomaterials Science, 2016, 4, 104-114.	2.6	26
509	pH Triggered Size Increasing Gene Carrier for Efficient Tumor Accumulation and Excellent Antitumor Effect. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15297-15306.	4.0	26
510	Thermal Properties of Polylactides with Different Stereoisomers of Lactides Used as Comonomers. Macromolecules, 2017, 50, 6064-6073.	2.2	26
511	<i>In situ</i> formation of hydrophobic clusters to enhance mechanical performance of biodegradable poly(<scp> </scp> -glutamic acid)/poly(ε-caprolactone) hydrogel towards meniscus tissue engineering. Journal of Materials Chemistry B, 2018, 6, 7822-7833.	2.9	26
512	Gradiently degraded electrospun polyester scaffolds with cytostatic for urothelial carcinoma therapy. Biomaterials Science, 2019, 7, 963-974.	2.6	26
513	Bioactive polypeptide hydrogels modified with RGD and N-cadherin mimetic peptide promote chondrogenic differentiation of bone marrow mesenchymal stem cells. Science China Chemistry, 2020, 63, 1100-1111.	4.2	26
514	Helix Self-Assembly Behavior of Amino Acid-Modified Camptothecin Prodrugs and Its Antitumor Effect. ACS Applied Materials & Damp; Interfaces, 2020, 12, 7466-7476.	4.0	26
515	Cisplatin nanoparticles possess stronger anti-tumor synergy with PD1/PD-L1 inhibitors than the parental drug. Acta Biomaterialia, 2021, 135, 543-555.	4.1	26
516	A new oxidation state of aniline pentamer observed in waterâ€soluble electroactive oligoanilineâ€chitosan polymer. Journal of Polymer Science Part A, 2008, 46, 1124-1135.	2.5	25
517	A biodegradable diblcok copolymer poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 267 Td (glycol)&Docetaxel and RGD conjugation. Journal of Applied Polymer Science, 2008, 110, 2961-2970.	â€∢i>bloch 1.3	२â€poly(25
518	Facile synthesis of thermo- and pH-responsive biodegradable microgels. Colloid and Polymer Science, 2011, 289, 447-451.	1.0	25
519	Development of an arginine-based cationic hydrogel platform: Synthesis, characterization and biomedical applications. Acta Biomaterialia, 2014, 10, 3098-3107.	4.1	25
520	Thiourea modified polyethylenimine for efficient gene delivery mediated by the combination of electrostatic interactions and hydrogen bonds. Polymer Chemistry, 2014, 5, 3598.	1.9	25
521	Novel hydroxyl-containing reduction-responsive pseudo-poly(aminoacid) via click polymerization as an efficient drug carrier. Polymer Chemistry, 2014, 5, 4488.	1.9	25
522	Hemi-salen aluminum catalysts bearing N, N, O-tridentate type binaphthyl-Schiff-base ligands for the living ring-opening polymerisation of lactide. RSC Advances, 2015, 5, 29412-29419.	1.7	25

#	Article	IF	CITATIONS
523	Rigid linked dinuclear salph-co(III) catalyst for carbondioxide/epoxides copolymerization. Applied Catalysis B: Environmental, 2016, 182, 580-586.	10.8	25
524	Compact Vesicles Self-Assembled from Binary Graft Copolymers with High Hydrophilic Fraction for Potential Drug/Protein Delivery. ACS Macro Letters, 2017, 6, 1186-1190.	2.3	25
525	Synthesis of PLLA-based block copolymers for improving melt strength and toughness of PLLA by in situ reactive blending. Polymer Degradation and Stability, 2017, 136, 58-70.	2.7	25
526	Osteoinductive Agents-Incorporated Three-Dimensional Biphasic Polymer Scaffold for Synergistic Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 986-995.	2.6	25
527	Supramolecular Self-Assembled Nanostructures for Cancer Immunotherapy. Frontiers in Chemistry, 2020, 8, 380.	1.8	25
528	Polymeric Nanocarriers for Drug Delivery in Osteosarcoma Treatment. Current Pharmaceutical Design, 2015, 21, 5187-5197.	0.9	25
529	Polymer nanotherapeutics to correct autoimmunity. Journal of Controlled Release, 2022, 343, 152-174.	4.8	25
530	Synthesis and characterization of novel biotinylated biodegradable poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 462 4.1	፲설 (glycol)
531	Isothermal Crystallization Behavior of the Poly(L-lactide) Block in Poly(L-lactide)-Poly(ethylene) Tj ETQq1 1 0.7843 38, 1251-1257.	14 rgBT /C 1.3	Overlock 10 24
532	Grafting BSA onto Poly[(<scp>L</scp> â€lactide)â€ <i>co</i> â€earbonate] Microspheres by Click Chemistry. Macromolecular Bioscience, 2008, 8, 638-644.	2.1	24
533	pH-dependent self-assembly of amphiphilic poly(l-glutamic acid)-block-poly(lactic-co-glycolic acid) copolymers. Polymer, 2010, 51, 2676-2682.	1.8	24
534	Side chain impacts on pH- and thermo-responsiveness of tertiary amine functionalized polypeptides. Journal of Polymer Science Part A, 2014, 52, 671-679.	2.5	24
535	Solid Tumor Therapy Using a Cannon and Pawn Combination Strategy. Theranostics, 2016, 6, 1023-1030.	4.6	24
536	Dual-Sensitive Charge-Conversional Polymeric Prodrug for Efficient Codelivery of Demethylcantharidin and Doxorubicin. Biomacromolecules, 2016, 17, 2650-2661.	2.6	24
537	One-pot copolymerization of epoxides/carbon dioxide and lactide using a ternary catalyst system. Catalysis Science and Technology, 2018, 8, 6452-6457.	2.1	24
538	Toughening modification of PLLA with PCL in the presence of PCLâ€∢i>bà€PLLA diblock copolymers as compatibilizer. Polymers for Advanced Technologies, 2019, 30, 963-972.	1.6	24
539	In–Situ‧prayed Dualâ€Functional Immunotherapeutic Gel for Colorectal Cancer Postsurgical Treatment. Advanced Healthcare Materials, 2021, 10, e2100862.	3.9	24
540	Synthesis and characterization of poly(Îμ-caprolactone)–poly(L-lactide) diblock copolymers with an organic amino calcium catalyst. Journal of Applied Polymer Science, 2006, 102, 2654-2660.	1.3	23

#	Article	IF	CITATIONS
541	Hydrogen bonding and crystallization in biodegradable multiblock poly(ester urethane) copolymer. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 685-695.	2.4	23
542	Facile construction of functional biosurface via SI-ATRP and "click glycosylation― Colloids and Surfaces B: Biointerfaces, 2012, 93, 188-194.	2.5	23
543	Effective Tumor Treatment by <scp>VEGF</scp> si <scp>RNA</scp> Complexed with Hydrophobic Poly(<scp>A</scp> mino Acid)â€ <scp>M</scp> odified Polyethylenimine. Macromolecular Bioscience, 2013, 13, 1438-1446.	2.1	23
544	Synthesis and characterization of tannin grafted polycaprolactone. Journal of Colloid and Interface Science, 2016, 479, 160-164.	5.0	23
545	Targeted sustained delivery of antineoplastic agent with multicomponent polylactide stereocomplex micelle. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1279-1288.	1.7	23
546	Enhancing the Stability of Hydrogels by Doubling the Schiff Base Linkages. Macromolecular Chemistry and Physics, 2019, 220, 1800484.	1.1	23
547	Poly(<scp> </scp> -glutamic acid)-Based Zwitterionic Polymer in a Charge Conversional Shielding System for Gene Therapy of Malignant Tumors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19295-19306.	4.0	23
548	Enhanced anti-PD-1 therapy in hepatocellular carcinoma by tumor vascular disruption and normalization dependent on combretastatin A4 nanoparticles and DC101. Theranostics, 2021, 11, 5955-5969.	4.6	23
549	Cytotoxicity of liver targeted drug-loaded alginate nanoparticles. Science in China Series B: Chemistry, 2009, 52, 1382-1387.	0.8	22
550	Glycyrrhetinic acid-modified nanoparticles for drug delivery: Preparation and characterization. Science Bulletin, 2009, 54, 3121-3126.	1.7	22
551	Biodegradable and Electroactive TEMPOâ€Substituted Acrylamide/Lactide Copolymers. Macromolecular Bioscience, 2010, 10, 1203-1209.	2.1	22
552	A Serumâ€Tolerant Hydroxylâ€Modified Polyethylenimine as Versatile Carriers of <i>p</i> DNA/siRNA. Macromolecular Bioscience, 2013, 13, 512-522.	2.1	22
553	Remission of Collagen-Induced Arthritis through Combination Therapy of Microfracture and Transplantation of Thermogel-Encapsulated Bone Marrow Mesenchymal Stem Cells. PLoS ONE, 2015, 10, e0120596.	1.1	22
554	5-Fluorouracil loaded thermosensitive PLGA–PEG–PLGA hydrogels for the prevention of postoperative tendon adhesion. RSC Advances, 2015, 5, 25295-25303.	1.7	22
555	A pH sensitive co-delivery system of siRNA and doxorubicin for pulmonary administration to B16F10 metastatic lung cancer. RSC Advances, 2015, 5, 103380-103385.	1.7	22
556	Covalent organic framework nanoparticles for anti-tumor gene therapy. Science China Chemistry, 2021, 64, 1235-1241.	4.2	22
557	pH/Potential-Responsive Large Aggregates from the Spontaneous Self-Assembly of a Triblock Copolymer in Water. Langmuir, 2008, 24, 13376-13382.	1.6	21
558	Morphologies and structures in poly(l-lactide-b-ethylene oxide) copolymers determined by crystallization, microphase separation, and vitrification. Polymer Bulletin, 2011, 67, 885-902.	1.7	21

#	Article	IF	CITATIONS
559	Hydrophobic Polyalanine Modified Hyperbranched Polyethylenimine as High Efficient pDNA and siRNA Carrier. Macromolecular Bioscience, 2014, 14, 1406-1414.	2.1	21
560	A comparative study of preventing postoperative tendon adhesion using electrospun polyester membranes with different degradation kinetics. Science China Chemistry, 2015, 58, 1159-1168.	4.2	21
561	A comparative study of linear, Y-shaped and linear-dendritic methoxy poly(ethylene) Tj ETQq1 1 0.784314 rgBT / in vitro and in vivo. Acta Biomaterialia, 2016, 40, 243-253.	Overlock (10 Tf 50 667 21
562	Effect of blending HA-g-PLLA on xanthohumol-loaded PLGA fiber membrane. Colloids and Surfaces B: Biointerfaces, 2016, 146, 221-227.	2.5	21
563	Legumain-cleavable 4-arm poly(ethylene glycol)-doxorubicin conjugate for tumor specific delivery and release. Acta Biomaterialia, 2017, 54, 227-238.	4.1	21
564	Injectable Enzymatically Crossâ€linked Hydrogels with Lightâ€Controlled Degradation Profile. Macromolecular Rapid Communications, 2018, 39, e1800272.	2.0	21
565	One-Pot Synthesis of Supertough, Sustainable Polyester Thermoplastic Elastomers Using Block-Like, Gradient Copolymer as Soft Midblock. CCS Chemistry, 2022, 4, 1263-1272.	4.6	21
566	Study of temperature dependence of crystallisation transitions of a symmetric PEO-PCL diblock copolymer using simultaneous SAXS and WAXS measurements with synchrotron radiation. European Physical Journal E, 2008, 27, 357-364.	0.7	20
567	Oligoethylenimines Grafted to PEGylated Poly(\hat{l}^2 -amino ester)s for Gene Delivery. Biomacromolecules, 2011, 12, 1024-1031.	2.6	20
568	Enzymatically crosslinked hydrogels based on linear poly(ethylene glycol) polymer: performance and mechanism. Polymer Chemistry, 2017, 8, 7017-7024.	1.9	20
569	Design of an Injectable Polypeptide Hydrogel Depot Containing the Immune Checkpoint Blocker Antiâ€PD‣1 and Doxorubicin to Enhance Antitumor Combination Therapy. Macromolecular Bioscience, 2021, 21, e2100049.	2.1	20
570	Injectable electroactive hydrogels based on Pluronic® F127 and tetraaniline copolymer. European Polymer Journal, 2017, 88, 67-74.	2.6	20
571	Selfâ€Amplifying Nanotherapeutic Drugs Homing to Tumors in a Manner of Chain Reaction. Advanced Materials, 2021, 33, e2002094.	11.1	20
572	Five-coordinated active species in the stereoselective polymerization of rac-lactide using N, \Re^2 -(2,2-dimethyl-1,3-propylene) bis (3,5-di-tert-butyl-salicylideneimine) aluminum complexes. Journal of Polymer Science Part A, 2006, 44, 4932-4938.	2.5	19
573	Synthesis and characterization of starch piperinic ester and its selfâ€assembly of nanospheres. Journal of Applied Polymer Science, 2008, 108, 523-528.	1.3	19
574	Synthesis and Electrochemistry of Schiff Base Cobalt(III) Complexes and Their Catalytic Activity for Copolymerization of Epoxide and Carbon Dioxide. Macromolecular Chemistry and Physics, 2010, 211, 669-676.	1.1	19
575	Water-catalyzed racemisation of lactide. Polymer Degradation and Stability, 2011, 96, 1745-1750.	2.7	19
576	Glutathione-degradable drug-loaded nanogel effectively and securely suppresses hepatoma in mouse model. International Journal of Nanomedicine, 2015, 10, 6587.	3.3	19

#	Article	IF	CITATIONS
577	Preparation of biocompatible, biodegradable and sustainable polylactides catalyzed by aluminum complexes bearing unsymmetrical dinaphthalene-imine derivatives via ring-opening polymerization of lactides. Catalysis Science and Technology, 2015, 5, 4644-4652.	2.1	19
578	Novel multi-sensitive pseudo-poly(amino acid) for effective intracellular drug delivery. RSC Advances, 2015, 5, 31972-31983.	1.7	19
579	Multi-responsive core-crosslinked poly (thiolether ester) micelles for smart drug delivery. Polymer, 2017, 110, 235-241.	1.8	19
580	DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS. Journal of the American Society for Mass Spectrometry, 2018, 29, 704-710.	1.2	19
581	A PEGylated alternating copolymer with oxidation-sensitive phenylboronic ester pendants for anticancer drug delivery. Biomaterials Science, 2019, 7, 3898-3905.	2.6	19
582	Highly Enhanced Antitumor Immunity by a Three-Barreled Strategy of the <scp>I</scp> -Arginine-Promoted Nanovaccine and Gene-Mediated PD-L1 Blockade. ACS Applied Materials & amp; Interfaces, 2020, 12, 41127-41137.	4.0	19
583	Enhanced nanoparticle accumulation by tumor-acidity-activatable release of sildenafil to induce vasodilation. Biomaterials Science, 2020, 8, 3052-3062.	2.6	19
584	A trinuclear salen–Al complex for copolymerization of epoxides and anhydride: mechanistic insight into a cocatalyst-free system. Chemical Communications, 2021, 57, 133-136.	2.2	19
585	Cationic Flexible Organic Framework for Combination of Photodynamic Therapy and Genetic Immunotherapy Against Tumors. Small, 2021, 17, e2008125.	5.2	19
586	Synthesis and characterization of poly(\hat{l}^2 -hydroxybutyrate) and poly($\hat{l}\mu$ -caprolactone) copolyester by transesterification. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1893-1903.	2.4	18
587	Photoâ€crossâ€linked biodegradable thermo―and pHâ€responsive hydrogels for controlled drug release. Journal of Applied Polymer Science, 2012, 123, 2923-2932.	1.3	18
588	Living and stereoselective polymerization of <i>rac</i> à€lactide by bimetallic aluminum Schiffâ€Base complexes. Journal of Polymer Science Part A, 2014, 52, 1344-1352.	2.5	18
589	Stereocomplex micelle from nonlinear enantiomeric copolymers efficiently transports antineoplastic drug. Nanoscale Research Letters, 2015, 10, 907.	3.1	18
590	(E)-Propyl α-Cyano-4-Hydroxyl Cinnamylate: A High Sensitive and Salt Tolerant Matrix for Intact Protein Profiling by MALDI Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 709-718.	1.2	18
591	Copolymer of lactide and $\hat{l}\mu$ -caprolactone catalyzed by bimetallic Schiff base aluminum complexes. Science China Chemistry, 2016, 59, 1384-1389.	4.2	18
592	Robust Fuel Catalyzed DNA Molecular Machine for in Vivo MicroRNA Detection. Advanced Biology, 2017, 1, 1700060.	3.0	18
593	Cisplatin Nanoparticles Promote Intratumoral CD8 ⁺ T Cell Priming via Antigen Presentation and T Cell Receptor Crosstalk. Nano Letters, 2022, 22, 3328-3339.	4.5	18
594	Novel physically crosslinked hydrogels of carboxymethyl chitosan and cellulose ethers: Structure and controlled drug release behavior. Journal of Applied Polymer Science, 2011, 119, 2350-2358.	1.3	17

#	Article	IF	CITATIONS
595	Flexibility Improvement of Poly(<scp>L</scp> â€lactide) by Reactive Blending With Poly(ether urethane) Containing Poly(ethylene glycol) Blocks. Macromolecular Chemistry and Physics, 2013, 214, 824-834.	1.1	17
596	Targeted dextran-b-poly($\hat{l}\mu$ -caprolactone) micelles for cancer treatments. RSC Advances, 2015, 5, 18593-18600.	1.7	17
597	Poly(lactic acid) Controlled Drug Delivery. Advances in Polymer Science, 2017, , 109-138.	0.4	17
598	Rapidly Thermoreversible and Biodegradable Polypeptide Hydrogels with Sol–Gel–Sol Transition Dependent on Subtle Manipulation of Side Groups. Biomacromolecules, 2021, 22, 3522-3533.	2.6	17
599	Drug-Incorporated Electrospun Fibers Efficiently Prevent Postoperative Adhesion. Current Pharmaceutical Design, 2015, 21, 1960-1966.	0.9	17
600	Electrochemically Controlled Switchable Copolymerization of Lactide, Carbon Dioxide, and Epoxides. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
601	A Novel Biodegradable and Lightâ€Breakable Diblock Copolymer Micelle for Drug Delivery. Advanced Engineering Materials, 2009, 11, B7.	1.6	16
602	Recent developments in intelligent biomedical polymers. Science in China Series B: Chemistry, 2009, 52, 117-130.	0.8	16
603	Crystalline structures of poly(l-lactide) formed under pressure and structure transitions with heating. CrystEngComm, 2013, 15, 4372.	1.3	16
604	Crystallization induced layer-to-layer transitions in symmetric PEO-b-PLLA block copolymer with synchrotron simultaneous SAXS/WAXS investigations. RSC Advances, 2014, 4, 56346-56354.	1.7	16
605	pH and reduction dual responsive cross-linked polyurethane micelles as an intracellular drug delivery system. RSC Advances, 2014, 4, 63070-63078.	1.7	16
606	Zinc complexes bearing tridentate O,N,O-type half-Salen ligands for ring-opening polymerization of lactide. Polymer, 2015, 71, 1-7.	1.8	16
607	Surface modification of 316L stainless steel by grafting methoxy poly(ethylene glycol) to improve the biocompatibility. Chemical Research in Chinese Universities, 2015, 31, 651-657.	1.3	16
608	Effect of the different architectures and molecular weights on stereocomplex in enantiomeric polylactides-b-MPEG block copolymers. Polymer, 2017, 123, 49-54.	1.8	16
609	A reduction-sensitive thermo-responsive polymer: Synthesis, characterization, and application in controlled drug release. European Polymer Journal, 2018, 101, 183-189.	2.6	16
610	Polymer Nanoplatforms at Work in Prostate Cancer Therapy. Advanced Therapeutics, 2019, 2, 1800122.	1.6	16
611	Cisplatin nanoparticles boost abscopal effect of radiation plus anti-PD1 therapy. Biomaterials Science, 2021, 9, 3019-3027.	2.6	16
612	Localized Chemotherapy Based on Injectable Hydrogel Boosts the Antitumor Activity of Adoptively Transferred T Lymphocytes In Vivo. Advanced Healthcare Materials, 2021, 10, e2100814.	3.9	16

#	Article	IF	CITATIONS
613	Unity Makes Strength: Constructing Polymeric Catalyst for Selective Synthesis of CO ₂ /Epoxide Copolymer. CCS Chemistry, 2023, 5, 750-760.	4.6	16
614	An efficient pH sensitive oral insulin delivery system enhanced by deoxycholic acid. Journal of Controlled Release, 2011, 152, e184-e186.	4.8	15
615	A Poly(acrylic acid) <i>à€blockâ€</i> Poly(<scp>L</scp> â€glutamic acid) Diblock Copolymer with Improved Cell Adhesion for Surface Modification. Macromolecular Bioscience, 2011, 11, 970-977.	2.1	15
616	Soft nanoconfinement effects on the crystallization behavior of asymmetric poly(ethylene) Tj ETQq0 0 0 rgBT /0	Overlock 1 1.6	O Tf 50 622 To
617	Facile preparation of corn starch nanoparticles by alkali-freezing treatment. RSC Advances, 2013, 3, 13406.	1.7	15
618	Protein-Cross-Linked Hydrogels with Tailored Swelling and Bioactivity Performance: A Comparative Study. ACS Applied Materials & Study. ACS	4.0	15
619	Mesomeric configuration makes polyleucine micelle an optimal nanocarrier. Biomaterials Science, 2016, 4, 814-818.	2.6	15
620	A Versatile Method to Prepare Protein Nanoclusters for Drug Delivery. Macromolecular Bioscience, 2018, 18, 1700282.	2.1	15
621	Mild synthesis of environment-friendly thermoplastic triblock copolymer elastomers through combination of ring-opening and RAFT polymerization. Polymer Chemistry, 2019, 10, 3610-3620.	1.9	15
622	Zinc ion coordination significantly improved the transfection efficiency of low molecular weight polyethylenimine. Biomaterials Science, 2019, 7, 1716-1728.	2.6	15
623	Dihydroartemisinin increases gemcitabine therapeutic efficacy in ovarian cancer by inducing reactive oxygen species. Journal of Cellular Biochemistry, 2019, 120, 634-644.	1.2	15
624	Manipulating Liver Bile Acid Signaling by Nanodelivery of Bile Acid Receptor Modulators for Liver Cancer Immunotherapy. Nano Letters, 2021, 21, 6781-6791.	4.5	15
625	Compatibility and Thermal and Structural Properties of Poly(<scp>I</scp> -(i>co- <scp>d</scp> -lactide) Blends. Macromolecules, 2022, 55, 1709-1718.	2.2	15
626	"Sandglassâ€â€Shaped Selfâ€Assembly of Coil–rod–coil Triblock Copolymer Containing Rigid Anilineâ€Pentamer. Macromolecular Rapid Communications, 2008, 29, 1242-1247.	2.0	14
627	A quantitative HPLC method for determining lactide content using hydrolytic kinetics. Polymer Testing, 2009, 28, 592-598.	2.3	14
628	Highly stereoselective bimetallic complexes for lactide and $\hat{l}\mu\text{-caprolactone}$ polymerization. RSC Advances, 2014, 4, 57210-57217.	1.7	14
629	Methylsulfonylmethane-loaded electrospun poly(lactide-co-glycolide) mats for cartilage tissue engineering. RSC Advances, 2015, 5, 96725-96732.	1.7	14
630	A versatile platform for surface modification of microfluidic droplets. Lab on A Chip, 2017, 17, 635-639.	3.1	14

#	Article	IF	CITATIONS
631	Preparation and Thermal Properties of Polycarbonates/esters Catalyzed by Using Dinuclear Salphâ€Al from Ringâ€Opening Polymerization of Epoxide Monomers. Chemistry - an Asian Journal, 2017, 12, 3135-3140.	1.7	14
632	Rapid fluorescence imaging of spinal cord following epidural administration of a nerve-highlighting fluorophore. Theranostics, 2017, 7, 1863-1874.	4.6	14
633	Promoting cell growth on porous PLA microspheres through simple degradation methods. Polymer Degradation and Stability, 2019, 161, 319-325.	2.7	14
634	A novel GSH responsive poly(alpha-lipoic acid) nanocarrier bonding with the honokiol-DMXAA conjugate for combination therapy. Science China Materials, 2020, 63, 307-315.	3.5	14
635	Crucial Impact of Residue Chirality on the Gelation Process and Biodegradability of Thermoresponsive Polypeptide Hydrogels. Biomacromolecules, 2021, 22, 3992-4003.	2.6	14
636	Mucoadhesive, Antibacterial, and Reductive Nanogels as a Mucolytic Agent for Efficient Nebulized Therapy to Combat Allergic Asthma. ACS Nano, 2022, 16, 11161-11173.	7.3	14
637	The study of electroactive block copolymer containing aniline pentamer isolated from different solvents. Journal of Polymer Science Part A, 2009, 47, 1298-1307.	2.5	13
638	Mechanical and thermal properties of polypeptide modified hydroxyapatite/poly(L-lactide) nanocomposites. Science China Chemistry, 2011, 54, 431-437.	4.2	13
639	Reverse-biomineralization assembly of acid-sensitive biomimetic fibers for hard tissue engineering and drug delivery. Journal of Materials Chemistry B, 2013, 1, 3694.	2.9	13
640	Insight into the fabrication of polymeric particle based oxygen carriers. International Journal of Pharmaceutics, 2014, 468, 75-82.	2.6	13
641	Protein-Resistant Biodegradable Amphiphilic Graft Copolymer Vesicles as Protein Carriers. Macromolecular Bioscience, 2015, 15, 1304-1313.	2.1	13
642	Fabrication of modular multifunctional delivery for antitumor drugs based on host–guest recognition. Acta Biomaterialia, 2015, 18, 168-175.	4.1	13
643	Hyaluronic acid based injectable hydrogels for localized and sustained gene delivery. Journal of Controlled Release, 2015, 213, e140-e141.	4.8	13
644	ε-Methacryloyl- <scp>l</scp> -lysine based polypeptides and their thiol–ene click functionalization. Polymer Chemistry, 2015, 6, 1758-1767.	1.9	13
645	Multidentate Comb-Shaped Polypeptides Bearing Trithiocarbonate Functionality: Synthesis and Application for Water-Soluble Quantum Dots. Biomacromolecules, 2017, 18, 924-930.	2.6	13
646	Polymer micro/nanocarrier-assisted synergistic chemohormonal therapy for prostate cancer. Biomaterials Science, 2018, 6, 1433-1444.	2.6	13
647	Poly (I-glutamic acid)-g-methoxy poly (ethylene glycol)-gemcitabine conjugate improves the anticancer efficacy of gemcitabine. International Journal of Pharmaceutics, 2018, 550, 79-88.	2.6	13
648	Physiologically relevant pH- and temperature-responsive polypeptide hydrogels with adhesive properties. Polymer Chemistry, 2021, 12, 2832-2839.	1.9	13

#	Article	IF	CITATIONS
649	Linear poly(ethylenimine)-graft-poly(ethylene glycol) copolymers: Their micellization and secondary assembly. Journal of Colloid and Interface Science, 2008, 320, 62-69.	5.0	12
650	Controlled release of drug via tuning electrospun polymer carrier. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 221-227.	2.4	12
651	Acidâ€Sensitive Nanogels for Synergistic Chemoâ€Photodynamic Therapy. Macromolecular Bioscience, 2015, 15, 1563-1570.	2.1	12
652	Synthesis of PEGylated alternating copolymer bearing thioether pendants for oxidation responsive drug delivery. European Polymer Journal, 2018, 107, 308-314.	2.6	12
653	Cationic amphiphilic dendrons with effective antibacterial performance. Journal of Materials Chemistry B, 2022, 10, 456-467.	2.9	12
654	Effects of Stereoregularity of Multiblock Copoly(rac-lactide)s on Stereocomplex Microparticles and Their Insulin Delivery. Macromolecular Bioscience, 2005, 5, 1193-1199.	2.1	11
655	Thermo―and pHâ€sensitive poly(vinylmethyl ether)/carboxymethylchitosan hydrogels crosslinked using electron beam irradiation or using glutaraldehyde as a crosslinker. Polymer International, 2009, 58, 1246-1251.	1.6	11
656	Metalloâ€Supramolecular Nanogels for Intracellular pHâ€Responsive Drug Release. Macromolecular Rapid Communications, 2014, 35, 1697-1705.	2.0	11
657	Pulmonary Drugs and Genes Delivery Systems for Lung Disease Treatment. Chinese Journal of Chemistry, 2014, 32, 13-21.	2.6	11
658	Polyoxometalates acid treatment for preparing starch nanoparticles. Carbohydrate Polymers, 2014, 112, 520-524.	5.1	11
659	Synthesis of the Hemoglobinâ€Conjugated Polymer Micelles by Thiol Michael Addition Reactions. Macromolecular Bioscience, 2016, 16, 906-913.	2.1	11
660	Improved cellular infiltration into 3D interconnected microchannel scaffolds formed by using melt-spun sacrificial microfibers. RSC Advances, 2016, 6, 2131-2134.	1.7	11
661	Investigation on the controlled synthesis and post-modification of poly-[(N-2-hydroxyethyl)-aspartamide]-based polymers. Polymer Chemistry, 2017, 8, 1872-1877.	1.9	11
662	Synthesis of multi-arm poly(l-lactide) and its modification on linear polylactide. Polymer Bulletin, 2017, 74, 245-262.	1.7	11
663	Thermosensitive Polypeptide Hydrogels Coâ€Loaded with Two Antiâ€Tumor Agents to Reduce Multiâ€Drug Resistance and Enhance Local Tumor Treatment. Advanced Therapeutics, 2020, 3, 1900165.	1.6	11
664	Matrix metalloproteinase-sensitive poly(ethylene glycol)/peptide hydrogels as an interactive platform conducive to cell proliferation during 3D cell culture. Science China Technological Sciences, 2021, 64, 1285-1294.	2.0	11
665	Opportunities and Challenges for mRNA Delivery Nanoplatforms. Journal of Physical Chemistry Letters, 2022, 13, 1314-1322.	2.1	11
666	Synthesis and crystallization behaviors of poly(styrene-b-isoprene-b-Îμ-caprolactone) triblock copolymers. European Polymer Journal, 2007, 43, 1905-1915.	2.6	10

#	Article	IF	CITATIONS
667	Layerâ€byâ€Layer Assembled Multilayer Films of Methoxypoly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Macromolecular Bioscience, 2011, 11, 1211-1217.	Tf 50 747 2.1	Td (glycol)
668	Zincâ€based catalyst for the ringâ€opening polymerization of cyclic esters. Journal of Applied Polymer Science, 2011, 121, 2378-2385.	1.3	10
669	Hyperbranched PEI grafted by hydrophilic amino acid segment poly[<i>N</i> â€(2â€hydroxyethyl)â€ <scp>L</scp> â€glutamine] as an efficient nonviral gene carrier. Journal of Applied Polymer Science, 2012, 123, 2257-2265.	1.3	10
670	Synthesis of electroactive and biodegradable multiblock copolymers based on poly(ester amide) and aniline pentamer. Journal of Polymer Science Part A, 2013, 51, 4722-4731.	2.5	10
671	Preparation of high toughness and high transparency polylactide blends resin based on multiarmed polycaprolactone- <i>block</i> -poly(<scp>I</scp> -lactide). Polymer Engineering and Science, 2016, 56, 1125-1137.	1.5	10
672	Toughening modification of PLLA by combination of copolymerization and in situ reactive blending. RSC Advances, 2016, 6, 113366-113376.	1.7	10
673	Multifunctional single-drug loaded nanoparticles for enhanced cancer treatment with low toxicity in vivo. RSC Advances, 2016, 6, 20366-20373.	1.7	10
674	A Surface Pattern on MALDI Steel Plate for One-Step In-Situ Self-Desalting and Enrichment of Peptides/Proteins. Journal of the American Society for Mass Spectrometry, 2017, 28, 428-433.	1.2	10
675	Combination therapy of pDNA and siRNA by versatile carriers composed of poly(<scp>l</scp> -serine) modified polyethylenimines. Materials Chemistry Frontiers, 2017, 1, 937-946.	3.2	10
676	Curcumin-encapsulated polymeric nanoparticles for metastatic osteosarcoma cells treatment. Science China Materials, 2017, 60, 995-1007.	3.5	10
677	Injectable Click Polypeptide Hydrogels via Tetrazine-Norbornene Chemistry for Localized Cisplatin Release. Polymers, 2020, 12, 884.	2.0	10
678	Engineered nanomedicines for tumor vasculature blockade therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1691.	3.3	10
679	A simple and general strategy for postsurgical personalized cancer vaccine therapy based on an injectable dynamic covalent hydrogel. Biomaterials Science, 2021, 9, 6879-6888.	2.6	10
680	SYNTHESIS AND SWELLING BEHAVIOR OF DEGRADABLE pH-SENSITIVE HYDROGELS COMPOSED OF POLY(L-GLUTAMIC ACID) AND POLY(ACRYLIC ACID). Acta Polymerica Sinica, 2011, 011, 883-888.	0.0	10
681	Guanylated Hyperbranched Polylysines with High In Vitro and In Vivo Antifungal Activity. Advanced Healthcare Materials, 2022, 11 , .	3.9	10
682	Synthesis of star–combâ€shaped polymer with porphyrinâ€core and its selfâ€assembly behavior study. Journal of Applied Polymer Science, 2012, 126, 2067-2076.	1.3	9
683	PEGylated poly(aspartate-g-OEI) copolymers for effective and prolonged gene transfection. Journal of Materials Chemistry B, 2014, 2, 2725.	2.9	9
684	Guanidinated Thioureaâ€Decorated Polyethylenimines for Enhanced Membrane Penetration and Efficient siRNA Delivery. Advanced Healthcare Materials, 2015, 4, 1369-1375.	3.9	9

#	Article	IF	CITATIONS
685	Phenylboronic Acidâ€Crossâ€Linked Nanoparticles with Improved Stability as Dual Acidâ€Responsive Drug Carriers. Macromolecular Bioscience, 2017, 17, 1600227.	2.1	9
686	Poly(ethylene glycol)-poly- <scp>l</scp> -glutamate complexed with polyethyleneimineâ^'polyglycine for highly efficient gene delivery <i>in vitro</i> and <i>in vivo</i> . Biomaterials Science, 2018, 6, 3053-3062.	2.6	9
687	FXIIIa substrate peptide decorated BLZ945 nanoparticles for specifically remodeling tumor immunity. Biomaterials Science, 2020, 8, 5666-5676.	2.6	9
688	Nanoparticles Composed of PEGylated Alternating Copolymerâ€Combretastatin A4 Conjugate for Cancer Therapy. Macromolecular Bioscience, 2021, 21, e2100077.	2.1	9
689	Enhanced antitumor chemoâ€immunotherapy by local coâ€delivery of chemotherapeutics, immune checkpoint blocking antibody and <scp>IDO</scp> inhibitor using an injectable polypeptide hydrogel. Journal of Polymer Science, 2022, 60, 1595-1609.	2.0	9
690	Shape-memory and biocompatibility properties of segmented polyurethanes based on poly(L-lactide). Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2007, 2, 331-336.	0.4	8
691	PLLA-PCys co-electrospun fibers for capture and elution of glutathione S-transferase. Science in China Series B: Chemistry, 2009, 52, 2033-2037.	0.8	8
692	Bioreducible crosslinked low molecular weight branched PEI-PBLG as an efficient gene carrier. Science China Chemistry, 2010, 53, 2490-2496.	4.2	8
693	Compatibilizing effect of starchâ€ <i>grafted</i> â€poly(<scp>L</scp> â€lactide) on the poly(εâ€caprolactone)/starch composites. Journal of Applied Polymer Science, 2010, 117, 2724-2731.	1.3	8
694	Application of the biodegradable diblock copolymer poly(<scp>L</scp> â€cysteine): Drug delivery and protein conjugation. Journal of Applied Polymer Science, 2010, 118, 1738-1742.	1.3	8
695	Tuned morphological electrospun hydroxyapatite nanofibers via pH. Journal of Bionic Engineering, 2012, 9, 478-483.	2.7	8
696	Co-administration of iRGD enhancing the anticancer efficacy of cisplatin-loaded polypeptide nanoparticles. Journal of Controlled Release, 2015, 213, e145-e146.	4.8	8
697	Micellization of Antineoplastic Agent to Significantly Upregulate Efficacy and Security. Macromolecular Bioscience, 2015, 15, 328-341.	2.1	8
698	Phenylboronic acid-functionalized polypeptide nanogel for glucose-responsive insulin release under physiological pH. Journal of Controlled Release, 2015, 213, e69.	4.8	8
699	Synergistic treatment of cancer stem cells by combinations of antioncogenes and doxorubicin. Journal of Drug Delivery Science and Technology, 2015, 30, 417-423.	1.4	8
700	PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA–PEG–PLGA hydrogels for localized and combined treatment of human osteosarcoma. Journal of Controlled Release, 2015, 213, e18.	4.8	8
701	Non-symmetrical aluminium salen complexes: Synthesis and their reactivity with cyclic ester. Polymer, 2015, 77, 122-128.	1.8	8
702	Quantification of residual monomer in polylactide by gas chromatographic internal standard method. Polymer Testing, 2016, 50, 79-82.	2.3	8

#	Article	IF	Citations
703	Ringâ€Opening Polymerization of Lactide Catalyzed by Bimetallic Salenâ€Type Titanium Complexes. Chinese Journal of Chemistry, 2017, 35, 640-644.	2.6	8
704	Disease Immunotherapy: Immunomodulatory Nanosystems (Adv. Sci. 17/2019). Advanced Science, 2019, 6, 1970100.	5.6	8
705	Unique Fractional Crystallization of Poly(<scp>I</scp> -2-hydroxyl-3-methylbutanoic acid) Blend. Macromolecules, 2017, 50, 4707-4714.	2.2	8
706	SYNTHESIS AND CHARACTERIZATION OF A CROSSLINKING POLYETHYLENIMINE AS SMART GENE CARRIER AND EFFECTS OF PEGYLATION DEGREE. Acta Polymerica Sinica, 2009, 009, 499-505.	0.0	8
707	Aldehyde end-capped CO ₂ -based polycarbonates: a green synthetic platform for site-specific functionalization. Polymer Chemistry, 2022, 13, 1731-1738.	1.9	8
708	Gelatin multilayers assembled on poly(<scp>L</scp> â€lactic acid) surface for better cytocompatibility. Journal of Applied Polymer Science, 2008, 109, 530-536.	1.3	7
709	Biodegradable pHâ€Dependent Thermoâ€Sensitive Hydrogels for Oral Insulin Delivery. Macromolecular Chemistry and Physics, 2012, 213, 713-719.	1.1	7
710	Rapid determination of residual monomer in polylactide using thermogravimetric analysis. Polymer Testing, 2012, 31, 660-662.	2.3	7
711	Synthesis, characterization and application of methyl 3,5-disulfo-benzoate dipotassium dihydrate as nucleating agent for poly(L-lactide). Chemical Research in Chinese Universities, 2014, 30, 333-338.	1.3	7
712	PEG-polypeptide conjugated with LHRH as an efficient vehicle for targeted delivery of doxorubicin to breast cancer. Journal of Controlled Release, 2015, 213, e99.	4.8	7
713	PCL–F68–PCL/PLGA–PEG–PLGA mixed micelles mediated delivery of mitoxantrone for reversing multidrug resistant in breast cancer. RSC Advances, 2016, 6, 35318-35327.	1.7	7
714	Zinc and Magnesium Complexes Bearing Oxazoline-Derived Ligands and Their Application for Ring Opening Polymerization of Cyclic Esters. ACS Omega, 2018, 3, 11703-11709.	1.6	7
715	Biomaterials: Functional Polymerâ€Based Nerve Guide Conduits to Promote Peripheral Nerve Regeneration (Adv. Mater. Interfaces 14/2020). Advanced Materials Interfaces, 2020, 7, 2070081.	1.9	7
716	Predicting the Loading Capability of <scp>mPEGâ€PDLLA</scp> to Hydrophobic Drugs Using Solubility Parameters /b>^{â€}. Chinese Journal of Chemistry, 2020, 38, 690-696.	2.6	7
717	Enhancers in polymeric nonviral gene delivery systems. View, 2021, 2, 20200072.	2.7	7
718	Dual Reactive Oxygen Species Generator Independent of Light and Oxygen for Tumor Imaging and Catalytic Therapy. CCS Chemistry, 2022, 4, 2321-2332.	4.6	7
719	Trinity immune enhancing nanoparticles for boosting antitumor immune responses of immunogenic chemotherapy. Nano Research, 2022, 15, 1183-1192.	5.8	7
720	Recent advances in organic and polymeric carriers for local tumor chemo-immunotherapy. Science China Technological Sciences, 2022, 65, 1011-1028.	2.0	7

#	Article	IF	Citations
721	Synthetic Helical Polypeptide as a Gene Transfection Enhancer. Biomacromolecules, 2022, 23, 2867-2877.	2.6	7
722	Photosensitizerâ€Polypeptide Conjugate for Effective Elimination of <i>Candida albicans</i> Biofilm. Advanced Healthcare Materials, 2022, 11, .	3.9	7
723	Self-assembly of a polymer pair through poly(lactide) stereocomplexation. Nanotechnology, 2007, 18, 185607.	1.3	6
724	Determination of D-lactide content in purified L-lactide using gas chromatography-high performance liquid chromatography. Polymer Testing, 2011, 30, 876-880.	2.3	6
725	ABA2-type triblock copolymer composed of PCL and PSt: synthesis and characterization. Polymer Bulletin, 2011, 67, 1507-1518.	1.7	6
726	Thermo-/pH-dual responsive properties of hyperbranched polyethylenimine grafted by phenylalanine. Archives of Pharmacal Research, 2014, 37, 142-148.	2.7	6
727	pH and reduction-sensitive disulfide cross-linked polyurethane micelles for bio-triggered anti-tumor drug delivery. Journal of Controlled Release, 2015, 213, e99-e100.	4.8	6
728	Preparation of antibacterial silver nanoparticle-coated PLLA grafted hydroxyapatite/PLLA composite electrospun fiber. Journal of Controlled Release, 2015, 213, e62-e63.	4.8	6
729	Enhanced toughness and strength of poly (<scp>d</scp> â€lactide) by stereocomplexation with 5â€arm poly (<scp>l</scp> â€lactide). Journal of Applied Polymer Science, 2016, 133, .	1.3	6
730	Functional computer-to-plate near-infrared absorbers as highly efficient photoacoustic dyes. Acta Biomaterialia, 2016, 43, 262-268.	4.1	6
731	A pH-sensitive cationic micelle for siRNA delivery. Journal of Controlled Release, 2017, 259, e47.	4.8	6
732	Microstructure and melting behavior of a solution $\hat{a} \in \epsilon$ ast polylactide stereocomplex: Effect of annealing. Journal of Applied Polymer Science, 2017, 134, .	1.3	6
733	Biocompatible in situ-forming glycopolypeptide hydrogels. Science China Technological Sciences, 2020, 63, 992-1004.	2.0	6
734	Influence of residual chirality on the conformation and enzymatic degradation of glycopolypeptide based biomaterials. Science China Technological Sciences, 2021, 64, 641-650.	2.0	6
735	Chronic Diabetic Wound Treatment: Green Tea Derivative Driven Smart Hydrogels with Desired Functions for Chronic Diabetic Wound Treatment (Adv. Funct. Mater. 18/2021). Advanced Functional Materials, 2021, 31, 2170127.	7.8	6
736	Calculating D-lactide content by probability using gas chromatographic data. Chemometrics and Intelligent Laboratory Systems, 2012, 110, 32-37.	1.8	5
737	The effect of alkyl side groups on the secondary structure and crystallization of poly(ethylene) Tj ETQq1 1 0.784	314 rgBT . 1.8	/Overlock 10
738	Emulsion click microspheres: morphology/shape control by surface cross-linking and a porogen. RSC Advances, 2014, 4, 23685-23689.	1.7	5

#	Article	IF	CITATIONS
739	Cisplatin complexes stabilized poly(glutamic acid) for controlled delivery of doxorubicin. Journal of Controlled Release, 2015, 213, e48-e49.	4.8	5
740	Chemically conjugating poly(amidoamine) with chondroitin sulfate to promote CD44-mediated endocytosis for miR-34a delivery. Journal of Controlled Release, 2015, 213, e95-e96.	4.8	5
741	A cool and high salt-tolerant ionic liquid matrix for preferential ionization of phosphopeptides by negative ion MALDI-MS. New Journal of Chemistry, 2017, 41, 12241-12249.	1.4	5
742	Determination of D-lactide content in lactide stereoisomeric mixture using gas chromatography-polarimetry. Talanta, 2017, 164, 268-274.	2.9	5
743	Recent Advances in Application of Poly-Epsilon-Caprolactone and its Derivative Copolymers for Controlled Release of Anti-Tumor Drugs. Current Cancer Drug Targets, 2017, 17, 445-455.	0.8	5
744	A high sensitive and contaminant tolerant matrix for facile detection of membrane proteins by matrix-assisted laser desorption/ionization mass spectrometry. Analytica Chimica Acta, 2018, 999, 114-122.	2.6	5
745	Facile Synthesis of Resveratrol Nanogels with Enhanced Fluorescent Emission. Macromolecular Bioscience, 2019, 19, 1800438.	2.1	5
746	Monomer Controlled Switchable Copolymerization: A Feasible Route for the Functionalization of Poly(lactide). Angewandte Chemie, 2021, 133, 9360-9364.	1.6	5
747	SYNTHESIS AND CHARACTERIZATION OF ELECTROACTIVE GRAFT COPOLYMER OF POLY(L-GLUTAMIC) Tj ETQq 1	1 0.78431 0.0	4 ggBT /Ove
748	Highly Effective Crosslinker for Redox-Sensitive Gene Carriers. Advances in Polymer Technology, 2021, 2021, 1-9.	0.8	5
749	Hierarchical Approach for Controlled Assembly of Branched Nanostructures from One Polymer Compound by Engineering Crystalline Domains. ACS Nano, 2022, 16, 10470-10481.	7.3	5
750	Gene-guided OX40L anchoring to tumor cells for synergetic tumor "self-killing―immunotherapy. Bioactive Materials, 2023, 25, 689-700.	8.6	5
751	Synthesis and characterization of amphiphilic block polymers with amino groups and their conjugates with folic acid and fluorescent probes. Polymer International, 2011, 60, 1269-1276.	1.6	4
752	Synthesis and characterization of αâ€amino acidâ€containing polyester: poly[(εâ€caprolactone)â€ <i>co</i> a€€serine lactone)]. Polymer International, 2013, 62, 454-462.	1.6	4
753	Hydrophobic N -acetyl- l -leucine grafted polyethylenimine as an efficient carrier for DNAzyme delivery. Journal of Controlled Release, 2015, 213, e146-e147.	4.8	4
754	Self-programmed pH-sensitive polymeric prodrug micelle for synergistic cancer therapy. Journal of Controlled Release, 2015, 213, e135-e136.	4.8	4
755	PEG-based thermo-responsive poly (\hat{l}^2 -thioether ester) for ROS-triggered drug delivery. Journal of Controlled Release, 2015, 213, e22.	4.8	4
756	Poly(ornithineâ€coâ€arginineâ€coâ€glycineâ€coâ€aspartic Acid): Preparation via NCA Polymerization and its Potential as a Polymeric Tumorâ€Penetrating Agent. Macromolecular Bioscience, 2015, 15, 829-838.	2.1	4

#	Article	IF	CITATIONS
757	Schiff base aluminum catalysts containing morpholinomethyl groups in the ring opening polymerization of rac-lactide. Science China Chemistry, 2015, 58, 1741-1747.	4.2	4
758	Exploring the in vivo fates of RGD and PEG modified PEI/DNA nanoparticles by optical imaging and optoacoustic imaging. RSC Advances, 2016, 6, 112552-112561.	1.7	4
759	Poly(L-lactide)-grafted bioglass/poly(lactide-co-glycolide) scaffolds with supercritical CO2 foaming reprocessing for bone tissue engineering. Chemical Research in Chinese Universities, 2017, 33, 499-506.	1.3	4
760	Bortezomib Increases the Cancer Therapeutic Efficacy of Poly(amino acid)–Doxorubicin. ACS Biomaterials Science and Engineering, 2018, 4, 2053-2060.	2.6	4
761	SYNTHESIS AND CHARACTERIZATION OF GENIPIN CROSS-LINKED OLIGOETHYLENIMINE FOR GENE DELIVERY. Acta Polymerica Sinica, 2011, 011, 1086-1091.	0.0	4
762	Effect of Polymer Topology and Residue Chirality on Biodegradability of Polypeptide Hydrogels. ACS Biomaterials Science and Engineering, 2022, 8, 626-637.	2.6	4
763	Metformin booster adipocyte-targeted gene therapy for the treatment of obesity and related metabolic syndromes. Science China Chemistry, 2022, 65, 796-809.	4.2	4
764	In Situ Reprogramming of Tumors for Activating the OX40/OX40 Ligand Checkpoint Pathway and Boosting Antitumor Immunity. ACS Biomaterials Science and Engineering, 2023, 9, 4108-4116.	2.6	4
765	A polyethylenimine derivative-based nanocarrier for the highly efficient delivery of p53 gene to inhibit the proliferation of cancer cells. Journal of Controlled Release, 2015, 213, e51.	4.8	3
766	pH-sensitive OEI-poly(aspartic acid- b -lysine) as charge shielding system for gene delivery. Journal of Controlled Release, 2015, 213, e104.	4.8	3
767	Doxorubicin prodrug thermogel as sustained drug reservoir for in situ malignant therapy. Journal of Controlled Release, 2015, 213, e126-e127.	4.8	3
768	Hydroxyapatite and vancomycin composited electrospun polylactide mat for osteomyelitis and bone defect treatment. Journal of Controlled Release, 2015, 213, e92.	4.8	3
769	Multiantigenic Nanovaccines: Multiantigenic Nanoformulations Activate Anticancer Immunity Depending on Size (Adv. Funct. Mater. 49/2019). Advanced Functional Materials, 2019, 29, 1970336.	7.8	3
770	Fabrication and characterization of CdTe nanoparticles attached to poly(4â€vinylpyridine) nanofibers. Journal of Applied Polymer Science, 2008, 108, 281-286.	1.3	2
771	Synthesis of oligoethylenimine grafted net-poly(amino ester) and their application in gene delivery. Journal of Controlled Release, 2011, 152, e176-e177.	4.8	2
772	In-situ forming glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. Journal of Controlled Release, 2015, 213, e64-e65.	4.8	2
773	Organometallic catalysts for the ring-opening polymerization of lactide. Scientia Sinica Chimica, 2018, 48, 874-882.	0.2	2
774	Cationic Amphiphilic Dendrons with Anticancer Activity. ACS Biomaterials Science and Engineering, 2022, 8, 2121-2130.	2.6	2

#	Article	IF	CITATIONS
775	Macromolecular Effects in Medicinal Chemistry [※] . Acta Chimica Sinica, 2022, 80, 563.	0.5	2
776	Introduction to Special Chinese Section Highlighting Papers of Chinese Authorship. Biomacromolecules, 2008, 9, 2567-2568.	2.6	1
777	Preface. Journal of Controlled Release, 2011, 155, 1.	4.8	1
778	Preparation of novel biodegradable ternary copolymers mPEG- b -P(MCC- g -OEI) and their gene delivery. Journal of Controlled Release, 2011, 152, e139-e140.	4.8	1
779	pH-responsive PEGylated doxorubicin for efficient cancer chemotherapy. Journal of Controlled Release, 2015, 213, e149.	4.8	1
780	Novel microcapsules for drug and gene delivery. Journal of Controlled Release, 2015, 213, e130-e131.	4.8	1
781	Drug Delivery: pH-Responsive Reversible PEGylation Improves Performance of Antineoplastic Agent (Adv. Healthcare Mater. 6/2015). Advanced Healthcare Materials, 2015, 4, 786-786.	3.9	1
782	Editorial (Thematic Issue: Polymeric Nanomedicines for Malignancy Therapy). Current Pharmaceutical Biotechnology, 2016, 17, 210-211.	0.9	1
783	Controlled Syntheses of Functional Polypeptides. ACS Symposium Series, 2017, , 149-170.	0.5	1
784	Synthesis of PEGylated Salicylaldehyde Azine via Metal-free Click Chemistry for Cellular Imaging Applications. Chemical Research in Chinese Universities, 2019, 35, 929-936.	1.3	1
785	Recent progress in the preparation of multicomponent polyesters by selective catalysis from mixed monomers. Scientia Sinica Chimica, 2021, 51, 144-153.	0.2	1
786	Sepsis Treatment Strategies Based on Nanomaterials < sup>※ < /sup>. Acta Chimica Sinica, 2022, 80, 668.	0.5	1
787	Biopolymers. Chinese Journal of Chemistry, 2014, 32, 5-5.	2.6	0
788	pH-sensitive polyion complex micelles for tunable intracellular drug delivery. Journal of Controlled Release, 2015, 213, e55.	4.8	0
789	Two-way combination chemotherapy for synergistic tumor capture. Journal of Controlled Release, 2015, 213, e113-e114.	4.8	0
790	Polyethylenimines modified by amino acids with different charge states and hydrophilic/hydrophobic properties for gene carriers. Journal of Controlled Release, 2015, 213, e41.	4.8	0
791	Back Cover: Macromol. Biosci. 3/2015. Macromolecular Bioscience, 2015, 15, 438-438.	2.1	0
792	Multifunctional three-dimensional scaffolds for treatment of spinal cord injury. Journal of Controlled Release, 2015, 213, e12-e13.	4.8	0

Xuesi Chen

#	Article	IF	CITATIONS
793	Enzymatically Synthesized Polyesters for Drug Delivery. , 2016, , 61-80.		0
794	A facile pH-sensitive shielding strategy for polycationic gene delivery system. Journal of Controlled Release, 2017, 259, e158-e159.	4.8	0
795	An Analytical Method for Determining Residual Lactide in Polylactide by Gas Chromatography. Analytical Sciences, 2017, 33, 235-238.	0.8	0
796	Preface: Biomaterials Science and Engineering in China Special Issue. ACS Biomaterials Science and Engineering, 2018, 4, 1926-1927.	2.6	0
797	Determination of residual monomers in poly(lactide-co-Îμ-caprolactone) using gas chromatography. Polymer Testing, 2021, 93, 106998.	2.3	0
798	Molecular Strings Modified Gene Delivery System. Biomaterial Engineering, 2021, , 1-37.	0.1	0
799	Charge/Size Dual-Rebound Gene Delivery System. Biomaterial Engineering, 2021, , 1-21.	0.1	0
800	Electrochemically Controlled Switchable Copolymerization of Lactide, Carbon Dioxide, and Epoxides. Angewandte Chemie, 0, , .	1.6	0
801	Molecular Strings Modified Gene Delivery System. Biomaterial Engineering, 2022, , 1-37.	0.1	0
802	Charge/Size Dual-Rebound Gene Delivery System. Biomaterial Engineering, 2022, , 39-59.	0.1	0
803	Versatile Polymerâ€Initiating Biomineralization for Tumor Blockade Therapy (Adv. Mater. 19/2022). Advanced Materials, 2022, 34, .	11.1	O