
Claudia Bregonzio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8876677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protection Against Ischemia and Improvement of Cerebral Blood Flow in Genetically Hypertensive Rats by Chronic Pretreatment With an Angiotensin II AT 1 Antagonist. Stroke, 2002, 33, 2297-2303.	1.0	197
2	Matrix metalloproteinase-2 cleavage of adrenomedullin produces a vasoconstrictor out of a vasodilator. Biochemical Journal, 2004, 383, 413-418.	1.7	124
3	Anti-inflammatory effects of angiotensin II AT ₁ receptor antagonism prevent stress-induced gastric injury. American Journal of Physiology - Renal Physiology, 2003, 285, G414-G423.	1.6	109
4	Anti-stress and anti-anxiety effects of centrally acting angiotensin II AT1 receptor antagonists. Regulatory Peptides, 2005, 128, 227-238.	1.9	108
5	A Centrally Acting, Anxiolytic Angiotensin II AT1 Receptor Antagonist Prevents the Isolation Stress-Induced Decrease in Cortical CRF1 Receptor and Benzodiazepine Binding. Neuropsychopharmacology, 2006, 31, 1123-1134.	2.8	96
6	Brain Angiotensin II, an Important Stress Hormone: Regulatory Sites and Therapeutic Opportunities. Annals of the New York Academy of Sciences, 2004, 1018, 76-84.	1.8	70
7	The anxiolytic effect of allopregnanolone is associated with gonadal hormonal status in female rats. European Journal of Pharmacology, 2001, 417, 111-116.	1.7	64
8	Oral administration of an AT1 receptor antagonist prevents the central effects of angiotensin II in spontaneously hypertensive rats. Brain Research, 2004, 1028, 9-18.	1.1	61
9	Anxiolytic-like effect induced by chronic stress is reversed by naloxone pretreatment. Brain Research Bulletin, 1995, 36, 209-213.	1.4	60
10	Angiotensin II AT ₁ receptor blockade selectively enhances brain AT ₂ receptor expression, and abolishes the cold-restraint stress-induced increase in tyrosine hydroxylase mRNA in the locus coeruleus of spontaneously hypertensive rats. Stress, 2008, 11, 457-466.	0.8	48
11	Angiotensin II AT1 and AT2 Receptors Contribute to Maintain Basal Adrenomedullary Norepinephrine Synthesis and Tyrosine Hydroxylase Transcription. Endocrinology, 2003, 144, 2092-2101.	1.4	47
12	ldentification of Vasoactive Nonpeptidic Positive and Negative Modulators of Adrenomedullin Using a Neutralizing Antibody-Based Screening Strategy. Endocrinology, 2004, 145, 3858-3865.	1.4	47
13	A Glutamate–Dopamine Interaction in the Persistent Enhanced Response to Amphetamine in Nucleus Accumbens Core but not Shell Following a Single Restraint Stress. Neuropsychopharmacology, 2007, 32, 682-692.	2.8	39
14	Anxiolytic-like effect of losartan injected into amygdala of the acutely stressed rats. Pharmacological Reports, 2012, 64, 54-63.	1.5	38
15	Angiotensin II AT1and AT2Receptor Types Regulate Basal and Stress-Induced Adrenomedullary Catecholamine Production through Transcriptional Regulation of Tyrosine Hydroxylase. Annals of the New York Academy of Sciences, 2004, 1018, 302-309.	1.8	31
16	Allopregnanolone increase in striatal N-methyl-D-aspartic acid evoked [3H]dopamine release is estrogen and progesterone dependent. Cellular and Molecular Neurobiology, 2002, 22, 445-454.	1.7	26
17	The AT ₁ angiotensin II receptor blockade attenuates the development of amphetamineâ€induced behavioral sensitization in a twoâ€injection protocol. Synapse, 2011, 65, 505-512.	0.6	26
18	Angiotensin II AT1Receptor Blockade Prevents Gastric Ulcers during Cold-Restraint Stress. Annals of the New York Academy of Sciences, 2004, 1018, 351-355.	1.8	24

#	Article	IF	CITATIONS
19	Stress and Angiotensin II: Novel Therapeutic Opportunities. CNS and Neurological Disorders, 2003, 2, 413-419.	4.3	24
20	Fear-Potentiated Behaviour Is Modulated by Central Amygdala Angiotensin II <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mtext>A</mml:mtext><mml:mtext>T</mml:mtext>< Stimulation. BioMed Research International, 2014, 2014, 1-7.</mml:mrow></mml:msub></mml:mrow></mml:math 	/mml:mrow>	<mmil:mrow></mmil:mrow>
21	Angiotensin II AT1Receptor Blockade Prolongs the Lifespan of Spontaneously Hypertensive Rats and Reduces Stress-Induced Release of Catecholamines, Glucocorticoids, and Vasopressin. Annals of the New York Academy of Sciences, 2004, 1018, 131-136.	1.8	22
22	Involvement of the brain renin–angiotensin system (RAS) in the neuroadaptive responses induced by amphetamine in a two-injection protocol. Behavioural Brain Research, 2014, 272, 314-323.	1.2	21
23	NMDA receptor antagonists block stress-induced prolactin release in female rats at estrus. European Journal of Pharmacology, 1998, 350, 259-265.	1.7	19
24	Dopaminergic Mechanisms Involved in Prolactin Release after Mifepristone and Naloxone Treatment during Late Pregnancy in the Rat. Neuroendocrinology, 2006, 84, 58-67.	1.2	19
25	Brain Angiotensin II AT1 receptors are involved in the acute and long-term amphetamine-induced neurocognitive alterations. Psychopharmacology, 2016, 233, 795-807.	1.5	19
26	Angiotensin II AT ₁ Receptors Are Involved in Neuronal Activation Induced by Amphetamine in a Two-Injection Protocol. BioMed Research International, 2013, 2013, 1-10.	0.9	17
27	Turnover rate and stimulus-evoked release of dopamine by progesterone and N-methyl-d-aspartic acid in rat striatum during pregnancy. European Journal of Pharmacology, 1996, 317, 55-59.	1.7	13
28	Neurotransmitters Involved in the Opioid Regulation of Prolactin Secretion at the End of Pregnancy in Rats. Neuroendocrinology, 2004, 80, 11-20.	1.2	12
29	Neurovascular unit alteration in somatosensory cortex and enhancement of thermal nociception induced by amphetamine involves central <scp>AT</scp> ₁ receptor activation. European Journal of Neuroscience, 2017, 45, 1586-1593.	1.2	12
30	Angiotensin II modulates amphetamineâ€induced glial and brain vascular responses, and attention deficit via angiotensin type 1 receptor: Evidence from brain regional sensitivity to amphetamine. European Journal of Neuroscience, 2020, 51, 1026-1041.	1.2	12
31	A previous history of repeated amphetamine exposure modifies brain angiotensin II AT1 receptor functionality. Neuroscience, 2015, 307, 1-13.	1.1	11
32	Amphetamine Induces Oxidative Stress, Glial Activation and Transient Angiogenesis in Prefrontal Cortex via AT1-R. Frontiers in Pharmacology, 2021, 12, 647747.	1.6	10
33	Brain Angiotensin II Involvement in Chronic Mental Disorders. Protein and Peptide Letters, 2017, 24, 817-826.	0.4	10
34	Opioid modulation of prolactin secretion induced by stress during late pregnancy. Role of ovarian steroids. Pharmacological Reports, 2014, 66, 386-393.	1.5	9
35	AT ₁ â€R is involved in the development of longâ€lasting, regionâ€dependent and oxidative stressâ€independent astrocyte morphological alterations induced by Ketamine. European Journal of Neuroscience, 2021, 54, 5705-5716.	1.2	9
36	NMDA Receptors in the Medial Zona Incerta Stimulate Luteinizing Hormone and Prolactin Release. Cellular and Molecular Neurobiology, 2004, 24, 331-342.	1.7	8

CLAUDIA BREGONZIO

#	Article	IF	CITATIONS
37	Differential responses in central dopaminergic activity induced by apomorphine in IPL nude rat. Behavioural Brain Research, 2002, 133, 143-148.	1.2	7
38	Angiotensin II AT 1 receptors mediate neuronal sensitization and sustained blood pressure response induced by a single injection of amphetamine. Neuroscience, 2017, 340, 521-529.	1.1	6
39	Alpha and beta noradrenergic mediation of NMDA glutamatergic effects on lordosis behaviour and plasmatic LH concentrations in the primed female rat. Journal of Neural Transmission, 2009, 116, 551-557.	1.4	5
40	Schizophrenia-like endurable behavioral and neuroadaptive changes induced by ketamine administration involve Angiotensin II AT1 receptor. Behavioural Brain Research, 2022, 425, 113809.	1.2	4
41	Intra-amygdaloid microinjection of neuropeptide glutamic acid-isoleucine induces anxiety-like behavior. NeuroReport, 2011, 22, 83-87.	0.6	2
42	Lack of Cdk5 activity is involved on Dopamine Transporter expression and function: Evidences from an an animal model of Attention-Deficit Hyperactivity Disorder. Experimental Neurology, 2021, 346, 113866.	2.0	2
43	Neurovascular Cognitive Alterations: Implication of Brain Renin–Angiotensin System. , 2015, , 101-117.		2
44	Brain angiotensin II in dopaminergic imbalance-derived pathologies: neuroinflammation and vascular responses. Neural Regeneration Research, 2021, 16, 504.	1.6	1
45	Editorial: Targeting Neuroinflammation in Central Nervous System Disorders: Uncovering Mechanisms, Pharmacological Targets, and Neuropharmaceutical Developments. Frontiers in Pharmacology, 2021, 12, 771610.	1.6	1
46	Glial Cells in the Schizophrenia Puzzle: Angiotensin II Role. , 2021, , 169-181.		0
47	Role of the Neuropeptide Angiotensin II in Stress and Related Disorders. , 2015, , 89-99.		0
48	Brain Renin-Angiotensin System: A Novel Therapeutic Target for Psychostimulant and Alcohol Related Disorders?. , 2015, , 79-88.		0
49	Mechanisms Involved in Memory Processes: Alterations Induced by Psychostimulants—Targeting the Central AT1 Receptors. , 2017, , 173-192.		Ο
50	The Extent of Neuroadaptive Responses to Psychostimulants: Focus on Brain Angiotensin System. , 2017, , 193-204.		0
51	Vascular Alterations in Mental Disorders: Focus in Angiotensin II Role. , 2019, , 101-112.		0
52	Angiotensinâ€converting enzyme inhibitors stimulate cerebral arteriogenesis. Acta Physiologica, 2022, 234, e13765.	1.8	0