
Andrea Curatolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/887650/publications.pdf Version: 2024-02-01

ANDREA CURATOLO

#	Article	IF	CITATIONS
1	Light-adapted flicker optoretinograms captured with a spatio-temporal optical coherence-tomography (STOC-T) system. Biomedical Optics Express, 2022, 13, 2186.	2.9	14
2	Simultaneous multi-spot OCT measurements of air induced corneal deformations. , 2022, , .		0
3	Smartphone-based optical palpation: towards elastography of skin for telehealth applications. Biomedical Optics Express, 2021, 12, 3117.	2.9	7
4	Estimation of scleral mechanical properties from air-puff optical coherence tomography. Biomedical Optics Express, 2021, 12, 6341.	2.9	11
5	Corrections of motion artifacts in dynamic low-cost, swept-source optical coherence tomography. , 2021, , .		0
6	Method to estimate scleral mechanical properties from air-puff optical coherence tomography: a proof-of-concept. , 2021, , .		0
7	Speckle in Optical Coherence Tomography. , 2021, , 4-1-4-29.		1
8	Optical Coherence Elastography Imaging Probes. , 2021, , 1-28.		0
9	Camera-based optical palpation. Scientific Reports, 2020, 10, 15951.	3.3	12
10	Handheld volumetric manual compressionâ€based quantitative microelastography. Journal of Biophotonics, 2020, 13, e201960196.	2.3	11
11	Diagnostic Accuracy of Quantitative Micro-Elastography for Margin Assessment in Breast-Conserving Surgery. Cancer Research, 2020, 80, 1773-1783.	0.9	54
12	Multi-meridian corneal imaging of air-puff induced deformation for improved detection of biomechanical abnormalities. Biomedical Optics Express, 2020, 11, 6337.	2.9	28
13	Handheld optical palpation of turbid tissue with motion-artifact correction. Biomedical Optics Express, 2019, 10, 226.	2.9	8
14	Finger-mounted quantitative micro-elastography. Biomedical Optics Express, 2019, 10, 1760.	2.9	19
15	Handheld probe for quantitative micro-elastography. Biomedical Optics Express, 2019, 10, 4034.	2.9	21
16	Accurate Representation of Microscopic Scatterers in Realistic Simulation of OCT Image Formation. , 2018, , .		0
17	Realistic simulation and experiment reveals the importance of scatterer microstructure in optical coherence tomography image formation. Biomedical Optics Express, 2018, 9, 3122.	2.9	5
18	Wide-field quantitative micro-elastography of human breast tissue. Biomedical Optics Express, 2018, 9, 1082.	2.9	44

ANDREA CURATOLO

#	Article	IF	CITATIONS
19	Optical coherence elastography for cellular-scale stiffness imaging of mouse aorta. , 2017, , .		0
20	Ultrahigh-Resolution Optical Coherence Elastography Images Cellular-Scale Stiffness of Mouse Aorta. Biophysical Journal, 2017, 113, 2540-2551.	0.5	20
21	Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics. Biomedical Optics Express, 2017, 8, 5127.	2.9	20
22	Depth-encoded optical coherence elastography for simultaneous volumetric imaging of two tissue faces. Optics Letters, 2017, 42, 1233.	3.3	6
23	A model of optical coherence tomography image formation based on Maxwell's equations. , 2016, , .		0
24	Quantifying the influence of Bessel beams on image quality in optical coherence tomography. Scientific Reports, 2016, 6, 23483.	3.3	41
25	Rigorous simulation of OCT image formation using Maxwell's equations in three dimensions (Conference Presentation). , 2016, , .		0
26	Compression optical coherence elastography for improved diagnosis of disease (Conference) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 462
27	Ultrahigh resolution optical coherence elastography using a Bessel beam for extended depth of field. , 2016, , .		0
28	Ultrahigh-resolution optical coherence elastography. Optics Letters, 2016, 41, 21.	3.3	42
29	Sensitivity and resolution in optical coherence micro-elastography. , 2015, , .		2
30	Full wave model of image formation in optical coherence tomography applicable to general samples. Optics Express, 2015, 23, 2541.	3.4	32
31	Investigation of Optical Coherence Microelastography as a Method to Visualize Cancers in Human Breast Tissue. Cancer Research, 2015, 75, 3236-3245.	0.9	91
32	Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography. Optics Letters, 2014, 39, 548.	3.3	86
33	Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure. Biomedical Optics Express, 2014, 5, 2113.	2.9	132
34	Analysis of image formation in optical coherence elastography using a multiphysics approach. Biomedical Optics Express, 2014, 5, 2913.	2.9	66
35	Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography. Biomedical Optics Express, 2012, 3, 1381.	2.9	193
36	Imaging of Breast Cancer With Optical Coherence Tomography Needle Probes: Feasibility and Initial Results. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1184-1191.	2.9	96

ANDREA CURATOLO

#	Article	IF	CITATIONS
37	Ultrasound-Guided Optical Coherence Tomography Needle Probe for the Assessment of Breast Cancer Tumor Margins. American Journal of Roentgenology, 2012, 199, W520-W522.	2.2	34
38	Structured three-dimensional optical phantom for optical coherence tomography. Optics Express, 2011, 19, 19480.	3.4	64
39	3D visualization of tissue microstructures using optical coherence tomography needle probes. , 2011, , .		1
40	Speckle reduction in optical coherence tomography images using tissue viscoelasticity. Journal of Biomedical Optics, 2011, 16, 020506.	2.6	21
41	Elastic Properties of the Central Airways in Obstructive Lung Diseases Measured Using Anatomical Optical Coherence Tomography. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 612-619.	5.6	108
42	In situ imaging of lung alveoli with an optical coherence tomography needle probe. Journal of Biomedical Optics, 2011, 16, 1.	2.6	70
43	Assessment and correction of imaging artifacts in skin imaging using fibre-based optical coherence tomography. , 2010, , .		0
44	Feasibility of Applying Real-time Optical Imaging During Bronchoscopic Interventions for Central Airway Obstruction. Journal of Bronchology and Interventional Pulmonology, 2010, 17, 307-316.	1.4	11
45	Measuring airway dimensions during bronchoscopy using anatomical optical coherence tomography. European Respiratory Journal, 2010, 35, 34-41.	6.7	67
46	Multiple scattering detection in optical coherence tomography using speckle statistics. , 2010, , .		0
47	Imaging true 3D endoscopic anatomy by incorporating magnetic tracking with optical coherence tomography: proof-of-principle for airways. Optics Express, 2010, 18, 27173.	3.4	28
48	Detection of multiple scattering in optical coherence tomography by speckle correlation of angle-dependent B-scans. Optics Letters, 2010, 35, 1998.	3.3	18
49	Speckle reduction in optical coherence tomography by strain compounding. Optics Letters, 2010, 35, 2445.	3.3	77
50	In vivo 4D imaging of the human lower airway using anatomical optical coherence tomography. , 2009, , .		1