Sara C Silvério

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8876271/publications.pdf

Version: 2024-02-01

39 papers 1,094 citations

331538 21 h-index 33 g-index

40 all docs

40 docs citations

40 times ranked

1261 citing authors

#	Article	IF	CITATIONS
1	Penicillium brevicompactum as a novel source of natural pigments with potential for food applications. Food and Bioproducts Processing, 2022, 132, 188-199.	1.8	9
2	Metagenomic Approaches as a Tool to Unravel Promising Biocatalysts from Natural Resources: Soil and Water. Catalysts, 2022, 12, 385.	1.6	9
3	One-step production of a novel prebiotic mixture using Zymomonas mobilis ZM4. Biochemical Engineering Journal, 2022, 183, 108443.	1.8	1
4	Hydrolysates containing xylooligosaccharides produced by different strategies: Structural characterization, antioxidant and prebiotic activities. Food Chemistry, 2022, 391, 133231.	4.2	7
5	Tailoring fructooligosaccharides composition with engineered Zymomonas mobilis ZM4. Applied Microbiology and Biotechnology, 2022, 106, 4617-4626.	1.7	5
6	Engineering Saccharomyces cerevisiae for the one-step production of a functional sweetening mixture towards food applications. Food and Bioproducts Processing, 2022, , .	1.8	1
7	Novel and emerging prebiotics: Advances and opportunities. Advances in Food and Nutrition Research, 2021, 95, 41-95.	1.5	21
8	Sustainable Lipase Production by Diutina rugosa NRRL Y-95 Through a Combined Use of Agro-Industrial Residues as Feedstock. Applied Biochemistry and Biotechnology, 2021, 193, 589-605.	1.4	14
9	Designing a functional rice muffin formulated with prebiotic oligosaccharides and sugar reduction. Food Bioscience, 2021, 40, 100858.	2.0	6
10	Epilactose Biosynthesis Using Recombinant Cellobiose 2-Epimerase Produced by <i>Saccharomyces cerevisiae</i> . ACS Food Science & Technology, 2021, 1, 1578-1584.	1.3	4
11	Improved method for the extraction of high-quality DNA from lignocellulosic compost samples for metagenomic studies. Applied Microbiology and Biotechnology, 2021, 105, 8881-8893.	1.7	9
12	Zymomonas mobilis as an emerging biotechnological chassis for the production of industrially relevant compounds. Bioresources and Bioprocessing, 2021, 8, .	2.0	10
13	In vitro assessment of prebiotic properties of xylooligosaccharides produced by Bacillus subtilis 3610. Carbohydrate Polymers, 2020, 229, 115460.	5.1	26
14	In vitro fermentation of raffinose to unravel its potential as prebiotic ingredient. LWT - Food Science and Technology, 2020, 126, 109322.	2.5	28
15	Biotech Green Approaches to Unravel the Potential of Residues into Valuable Products. Nanotechnology in the Life Sciences, 2020, , 97-150.	0.4	3
16	Biocatalysis in Ionic Liquids: Enzymatic Synthesis of Sugar Fatty Acid Esters. Nanotechnology in the Life Sciences, 2020, , 51-79.	0.4	0
17	Integrated strategy for purification of esterase from Aureobasidium pullulans. Separation and Purification Technology, 2019, 209, 409-418.	3.9	9
18	One-step process for producing prebiotic arabino-xylooligosaccharides from brewer's spent grain employing Trichoderma species. Food Chemistry, 2019, 270, 86-94.	4.2	66

#	Article	IF	CITATIONS
19	Downscale fermentation for xylooligosaccharides production by recombinant Bacillus subtilis 3610. Carbohydrate Polymers, 2019, 205, 176-183.	5.1	22
20	New \hat{l}^2 -galactosidase producers with potential for prebiotic synthesis. Bioresource Technology, 2018, 250, 131-139.	4.8	31
21	Single-step production of arabino-xylooligosaccharides by recombinant Bacillus subtilis 3610 cultivated in brewers' spent grain. Carbohydrate Polymers, 2018, 199, 546-554.	5.1	31
22	\hat{l}^2 -galactosidase from Aspergillus lacticoffeatus : A promising biocatalyst for the synthesis of novel prebiotics. International Journal of Food Microbiology, 2017, 257, 67-74.	2.1	38
23	Biocatalytic Approaches Using Lactulose: End Product Compared with Substrate. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 878-896.	5.9	19
24	Polyethylene glycol 8000+ citrate salts aqueous two-phase systems: Relative hydrophobicity of the equilibrium phases. Fluid Phase Equilibria, 2016, 407, 298-303.	1.4	11
25	Perspectives on the biotechnological production and potential applications of lactosucrose: A review. Journal of Functional Foods, 2015, 19, 74-90.	1.6	44
26	Cation effect on the (PEG 8000 + sodium sulfate) and (PEG 8000 + magnesium sulfate) aqueous two-phase system: Relative hydrophobicity of the equilibrium phases. Journal of Chemical Thermodynamics, 2015, 91, 321-326.	1.0	12
27	Laccase production by free and immobilized mycelia of Peniophora cinerea and Trametes versicolor: a comparative study. Bioprocess and Biosystems Engineering, 2013, 36, 365-373.	1.7	25
28	Recovery of Peniophora cinerea laccase using aqueous two-phase systems composed by ethylene oxide/propylene oxide copolymer and potassium phosphate salts. Journal of Chromatography A, 2013, 1321, 14-20.	1.8	26
29	Laccase recovery with aqueous two-phase systems: Enzyme partitioning and stability. Journal of Molecular Catalysis B: Enzymatic, 2013, 87, 37-43.	1.8	35
30	The Effect of Salts on the Liquid–Liquid Phase Equilibria of PEG600 + Salt Aqueous Two-Phase Systems. Journal of Chemical & Data, 2013, 58, 3528-3535.	1.0	48
31	Effect of Aqueous Two-Phase System Constituents in Different Poly(ethylene glycol)–Salt Phase Diagrams. Journal of Chemical & Engineering Data, 2012, 57, 1203-1208.	1.0	53
32	(Liquid+liquid) equilibria of polymer-salt aqueous two-phase systems for laccase partitioning: UCON 50-HB-5100 with potassium citrate and (sodium or potassium) formate at $23\text{Å}^{\circ}\text{C}$. Journal of Chemical Thermodynamics, 2012, 55, 166-171.	1.0	32
33	Green coconut fiber: a novel carrier for the immobilization of commercial laccase by covalent attachment for textile dyes decolourization. World Journal of Microbiology and Biotechnology, 2012, 28, 2827-2838.	1.7	68
34	Interference of some aqueous two-phase system phase-forming components in protein determination by the Bradford method. Analytical Biochemistry, 2012, 421, 719-724.	1.1	37
35	Solute partitioning in polymer–salt ATPS: The Collander equation. Fluid Phase Equilibria, 2010, 296, 173-177.	1.4	24
36	Gibbs free energy of transfer of a methylene group on {UCON+(sodium or potassium) phosphate salts} aqueous two-phase systems: Hydrophobicity effects. Journal of Chemical Thermodynamics, 2010, 42, 1063-1069.	1.0	21

Sara C Silvério

#	Article	IF	CITATIONS
37	Liquidâ^'Liquid Equilibria of UCON + (Sodium or Potassium) Phosphate Salt Aqueous Two-Phase Systems at 23 °C. Journal of Chemical & Engineering Data, 2010, 55, 1285-1288.	1.0	36
38	î" <i>G</i> (CH ₂) in PEGâ^'Salt and Uconâ^'Salt Aqueous Two-Phase Systems. Journal of Chemical & Chem	1.0	32
39	Physicochemical Characterization of the PEG8000-Na2SO4 Aqueous Two-Phase System. Industrial & Engineering Chemistry Research, 2007, 46, 8199-8204.	1.8	45