Brendan T Higgins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/887621/publications.pdf

Version: 2024-02-01

430754 477173 2,882 32 18 29 citations g-index h-index papers 32 32 32 4046 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Azospirillum brasilense reduces oxidative stress in the green microalgae Chlorella sorokiniana under different stressors. Journal of Biotechnology, 2021, 325, 179-185.	1.9	18
2	Factors impacting the effectiveness of biological pretreatment for the alleviation of algal growth inhibition on anaerobic digestate. Algal Research, 2021, 53, 102129.	2.4	14
3	Comparison of algae growth and symbiotic mechanisms in the presence of plant growth promoting bacteria and non-plant growth promoting bacteria. Algal Research, 2021, 53, 102156.	2.4	22
4	Investigation of covers and chemical treatment for the suppression of cyanobacteria in water treatment systems. Water and Environment Journal, 2021, 35, 463-472.	1.0	2
5	Effect of ammonia removal and biochar detoxification on anaerobic digestion of aqueous phase from municipal sludge hydrothermal liquefaction. Bioresource Technology, 2021, 326, 124730.	4.8	23
6	Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review. Chemosphere, 2021, 272, 129878.	4.2	171
7	Production of Daphnia zooplankton on wastewater-grown algae for sustainable conversion of waste nutrients to fish feed. Journal of Cleaner Production, 2021, 310, 127501.	4.6	10
8	Moisture content and aeration control mineral nutrient solubility in poultry litter. Journal of Environmental Management, 2021, 300, 113787.	3.8	3
9	Acclimation of an algal consortium to sequester nutrients from anaerobic digestate. Bioresource Technology, 2021, 342, 125921.	4.8	9
10	Algal photosynthetic aeration increases the capacity of bacteria to degrade organics in wastewater. Biotechnology and Bioengineering, 2020, 117, 62-72.	1.7	31
11	Anaerobic microbial communities can influence algal growth and nutrient removal from anaerobic digestate. Bioresource Technology, 2020, 297, 122445.	4.8	16
12	Biomass production and Nitrification in an algal-bacterial wastewater treatment system. , 2020, , .		1
13	Algae support populations of heterotrophic, nitrifying, and phosphate-accumulating bacteria in the treatment of poultry litter anaerobic digestate. Chemical Engineering Journal, 2020, 398, 125550.	6.6	44
14	Indole-3-acetic acid from Azosprillum brasilense promotes growth in green algae at the expense of energy storage products. Algal Research, 2020, 47, 101845.	2.4	38
15	Enhancement of biogas production from wastewater sludge via anaerobic digestion assisted with biochar amendment. Bioresource Technology, 2020, 309, 123368.	4.8	56
16	Aerobic bacterial pretreatment to overcome algal growth inhibition on high-strength anaerobic digestates. Water Research, 2019, 162, 420-426.	5.3	46
17	Use of photocatalytic nanomaterials for volatile fatty acid removal from anaerobic digestate leads to improved algal growth. , 2019, , .		O
18	Photoreduction of CCl3F in aqueous solutions containing sulfonated poly(ether etherketone) and formate buffers. Research on Chemical Intermediates, 2019, 45, 4015-4028.	1.3	1

#	Article	IF	CITATIONS
19	Cultivation of Green Microalgae in Bubble Column Photobioreactors and an Assay for Neutral Lipids. Journal of Visualized Experiments, 2019, , .	0.2	9
20	Leaching and anaerobic digestion of poultry litter for biogas production and nutrient transformation. Waste Management, 2019, 84, 413-422.	3.7	35
21	Improved microalgae biomass production and wastewater treatment: Pre-treating municipal anaerobic digestate for algae cultivation. , 2018, , .		2
22	Algal–bacterial synergy in treatment of winery wastewater. Npj Clean Water, 2018, 1, .	3.1	75
23	Impact of thiamine metabolites and spent medium from Chlorella sorokiniana on metabolism in the green algae Auxenochlorella prototheciodes. Algal Research, 2018, 33, 197-208.	2.4	15
24	lonic Liquids Impact the Bioenergy Feedstock-Degrading Microbiome and Transcription of Enzymes Relevant to Polysaccharide Hydrolysis. MSystems, 2016, 1, .	1.7	15
25	Cofactor symbiosis for enhanced algal growth, biofuel production, and wastewater treatment. Algal Research, 2016, 17, 308-315.	2.4	53
26	The role of organic matter amendment level on soil heating, organic acid accumulation, and development of bacterial communities in solarized soil. Applied Soil Ecology, 2016, 106, 37-46.	2.1	48
27	Coâ€culturing <i>Chlorella minutissima</i> with <i>Escherichia coli</i> can increase neutral lipid production and improve biodiesel quality. Biotechnology and Bioengineering, 2015, 112, 1801-1809.	1.7	33
28	MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods, 2015, 12, 523-526.	9.0	1,955
29	Informatics for improved algal taxonomic classification and research: A case study of UTEX 2341. Algal Research, 2015, 12, 545-549.	2.4	20
30	Effects of Escherichia coli on Mixotrophic Growth of Chlorella minutissima and Production of Biofuel Precursors. PLoS ONE, 2014, 9, e96807.	1.1	58
31	Microplate assay for quantitation of neutral lipids in extracts from microalgae. Analytical Biochemistry, 2014, 465, 81-89.	1.1	32
32	Life Cycle Environmental and Cost Impacts of Using an Algal Turf Scrubber to Treat Dairy Wastewater. Journal of Industrial Ecology, 2012, 16, 436-447.	2.8	27