
Hiroaki Gomi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8876198/publications.pdf Version: 2024-02-01

HIROAKI COMI

#	Article	IF	CITATIONS
1	Evidence that endpoint feedback facilitates intermanual transfer of visuomotor force learning by a cognitive strategy. Journal of Neurophysiology, 2022, 127, 16-26.	0.9	3
2	Interplay of tactile and motor information in constructing spatial self-perception. Current Biology, 2022, 32, 1301-1309.e3.	1.8	6
3	Seeing motion of controlled object improves grip timing in adults with autism spectrum condition: evidence for use of inverse dynamics in motor control. Experimental Brain Research, 2021, 239, 1047-1059.	0.7	2
4	Gaze control during reaching is flexibly modulated to optimize task outcome. Journal of Neurophysiology, 2021, 126, 816-826.	0.9	1
5	World model learning and inference. Neural Networks, 2021, 144, 573-590.	3.3	28
6	Parallel and hierarchical neural mechanisms for adaptive and predictive behavioral control. Neural Networks, 2021, 144, 507-521.	3.3	13
7	On Stopping Voluntary Muscle Relaxations and Contractions: Evidence for Shared Control Mechanisms and Muscle State-Specific Active Breaking. Journal of Neuroscience, 2020, 40, 6035-6048.	1.7	4
8	Visually-updated hand state estimates modulate the proprioceptive reflex independently of motor task requirements. ELife, 2020, 9, .	2.8	10
9	Distinct temporal developments of visual motion and position representations for multi-stream visuomotor coordination. Scientific Reports, 2019, 9, 12104.	1.6	3
10	The faster you decide, the more accurate localization is possible: Position representation of "curveball illusion―in perception and eye movements. PLoS ONE, 2018, 13, e0201610.	1.1	6
11	Typical use of inverse dynamics in perceiving motion in autistic adults: Exploring computational principles of perception and action. Autism Research, 2018, 11, 1062-1075.	2.1	2
12	Sensorimotor organization of a sustained involuntary movement. Frontiers in Behavioral Neuroscience, 2015, 9, 185.	1.0	10
13	Online gain update for manual following response accompanied by gaze shift during arm reaching. Journal of Neurophysiology, 2015, 113, 1206-1216.	0.9	6
14	Lack of motor prediction, rather than perceptual conflict, evokes an odd sensation upon stepping onto a stopped escalator. Frontiers in Behavioral Neuroscience, 2014, 8, 77.	1.0	2
15	The Hand Sees Visual Periphery Better Than the Eye: Motor-Dependent Visual Motion Analyses. Journal of Neuroscience, 2013, 33, 16502-16509.	1.7	13
16	Effect of visuomotor-map uncertainty on visuomotor adaptation. Journal of Neurophysiology, 2012, 107, 1576-1585.	0.9	15
17	Multiple Motor Learning Strategies in Visuomotor Rotation. PLoS ONE, 2010, 5, e9399.	1.1	80
18	Spatial Coincidence of Intentional Actions Modulates an Implicit Visuomotor Control. Journal of Neurophysiology, 2010, 103, 2717-2727.	0.9	15

Ηιγοακί Gomi

#	Article	IF	CITATIONS
19	Implicit Visuomotor Processing for Quick Online Reactions Is Robust against Aging. Journal of Neuroscience, 2010, 30, 205-209.	1.7	30
20	Close Similarity Between Spatiotemporal Frequency Tunings of Human Cortical Responses and Involuntary Manual Following Responses to Visual Motion. Journal of Neurophysiology, 2009, 101, 888-897.	0.9	12
21	Temporal Development of Anticipatory Reflex Modulation to Dynamical Interactions During Arm Movement. Journal of Neurophysiology, 2009, 102, 2220-2231.	0.9	31
22	Implicit online corrections of reaching movements. Current Opinion in Neurobiology, 2008, 18, 558-564.	2.0	71
23	Spatiotemporal Tuning of Rapid Interactions between Visual-Motion Analysis and Reaching Movement. Journal of Neuroscience, 2006, 26, 5301-5308.	1.7	64
24	Transcranial Magnetic Stimulation over Sensorimotor Cortex Disrupts Anticipatory Reflex Gain Modulation for Skilled Action. Journal of Neuroscience, 2006, 26, 9272-9281.	1.7	103
25	Large-Field Visual Motion Directly Induces an Involuntary Rapid Manual Following Response. Journal of Neuroscience, 2005, 25, 4941-4951.	1.7	117
26	Dynamical simulation of speech cooperative articulation by muscle linkages. Biological Cybernetics, 2004, 91, 275-282.	0.6	15
27	Fast force-generation dynamics of human articulatory muscles. Journal of Applied Physiology, 2004, 96, 2318-2324.	1.2	43
28	Compensatory articulation during bilabial fricative production by regulating muscle stiffness. Journal of Phonetics, 2002, 30, 261-279.	0.6	37
29	Short- and Long-Term Changes in Joint Co-Contraction Associated With Motor Learning as Revealed From Surface EMG. Journal of Neurophysiology, 2002, 88, 991-1004.	0.9	308
30	Change in Neuronal Firing Patterns in the Process of Motor Command Generation for the Ocular Following Response. Journal of Neurophysiology, 2001, 86, 1750-1763.	0.9	41
31	Multijoint Muscle Regulation Mechanisms Examined by Measured Human Arm Stiffness and EMG Signals. Journal of Neurophysiology, 1999, 81, 1458-1468.	0.9	191
32	Quantitative Examinations of Internal Representations for Arm Trajectory Planning: Minimum Commanded Torque Change Model. Journal of Neurophysiology, 1999, 81, 2140-2155.	0.9	290
33	Task-Dependent Viscoelasticity of Human Multijoint Arm and Its Spatial Characteristics for Interaction with Environments. Journal of Neuroscience, 1998, 18, 8965-8978.	1.7	306
34	Temporal Firing Patterns of Purkinje Cells in the Cerebellar Ventral Paraflocculus During Ocular Following Responses in Monkeys I. Simple Spikes. Journal of Neurophysiology, 1998, 80, 818-831.	0.9	144
35	Temporal Firing Patterns of Purkinje Cells in the Cerebellar Ventral Paraflocculus During Ocular Following Responses in Monkeys II. Complex Spikes. Journal of Neurophysiology, 1998, 80, 832-848.	0.9	176
36	Human arm stiffness and equilibrium-point trajectory during multi-joint movement. Biological Cybernetics, 1997, 76, 163-171.	0.6	329

Ηιγοακί Gomi

#	Article	IF	CITATIONS
37	A Kendama Learning Robot Based on Bi-directional Theory. Neural Networks, 1996, 9, 1281-1302.	3.3	139
38	Neural network control for a closed-loop System using Feedback-error-learning. Neural Networks, 1993, 6, 933-946.	3.3	244
39	The cerebellum and VOR/OKR learning models. Trends in Neurosciences, 1992, 15, 445-453.	4.2	280
40	A computational model of four regions of the cerebellum based on feedback-error learning. Biological Cybernetics, 1992, 68, 95-103.	0.6	583
41	Adaptive feedback control models of the vestibulocerebellum and spinocerebellum. Biological Cybernetics, 1992, 68, 105-114.	0.6	165