Ren'an Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8876181/publications.pdf

Version: 2024-02-01

434170 430843 1,332 30 18 31 citations h-index g-index papers 34 34 34 1752 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Self-assembly of MoS2 nanosheet adhered on Fe-MOF heterocrystals for peroxymonosulfate activation via interfacial interaction. Journal of Colloid and Interface Science, 2022, 608, 3098-3110.	9.4	22
2	Twoâ€Dimensional Tin Selenide (SnSe) Nanosheets Capable of Mimicking Key Dehydrogenases in Cellular Metabolism. Angewandte Chemie - International Edition, 2020, 59, 3618-3623.	13.8	58
3	Twoâ€Dimensional Tin Selenide (SnSe) Nanosheets Capable of Mimicking Key Dehydrogenases in Cellular Metabolism. Angewandte Chemie, 2020, 132, 3647-3652.	2.0	8
4	One-pot hydrothermal cross-linking preparation of poly(vinylpyrrolidone) immobilized silica stationary phase for hydrophilic interaction chromatography. Journal of Chromatography A, 2020, 1633, 461656.	3.7	5
5	The synthesis and structure of the [PdAu ₁₃ (PPh ₃) ₃ (SR) ₇] ⁺ nanocluster. Nanoscale, 2020, 12, 11825-11829.	5.6	1
6	A multi-omics investigation of the molecular characteristics and classification of six metabolic syndrome relevant diseases. Theranostics, 2020, 10, 2029-2046.	10.0	35
7	The efficient profiling of serum <i>N</i> -linked glycans by a highly porous 3D graphene composite. Analyst, The, 2019, 144, 5261-5270.	3.5	9
8	Oneâ€Step Scalable Fabrication of Grapheneâ€Integrated Microâ€Supercapacitors with Remarkable Flexibility and Exceptional Performance Uniformity. Advanced Functional Materials, 2019, 29, 1902860.	14.9	104
9	High Anti-Interfering Profiling of Endogenous Glycopeptides for Human Plasma by the Dual-Hydrophilic Metal–Organic Framework. Analytical Chemistry, 2019, 91, 4852-4859.	6.5	44
10	Facile one-pot synthesized hydrothermal carbon from cyclodextrin: A stationary phase for hydrophilic interaction liquid chromatography. Journal of Chromatography A, 2019, 1585, 144-151.	3.7	10
11	A nano-bio interfacial protein corona on silica nanoparticle. Colloids and Surfaces B: Biointerfaces, 2018, 167, 220-228.	5.0	29
12	Metal–organic frameworks in proteomics/peptidomics-A review. Analytica Chimica Acta, 2018, 1027, 9-21.	5.4	48
13	Highly Porous Metal-Free Graphitic Carbon Derived from Metal–Organic Framework for Profiling of N-Linked Glycans. ACS Applied Materials & Interfaces, 2018, 10, 11896-11906.	8.0	35
14	Highly Specific Enrichment of Multi-phosphopeptides by the Diphosphorylated Fructose-Modified Dual-Metal-Centered Zirconium–Organic Framework. ACS Applied Materials & Diterfaces, 2018, 10, 32613-32621.	8.0	38
15	Reversible conversion between phosphine protected Au ₆ and Au ₈ nanoclusters under oxidative/reductive conditions. Nanoscale, 2017, 9, 2424-2427.	5.6	9
16	Preparation of organic-silica hybrid monolithic columns via crosslinking of functionalized mesoporous carbon nanoparticles for capillary liquid chromatography. Journal of Chromatography A, 2017, 1498, 64-71.	3.7	16
17	Dual-Metal Centered Zirconium–Organic Framework: A Metal-Affinity Probe for Highly Specific Interaction with Phosphopeptides. ACS Applied Materials & Samp; Interfaces, 2016, 8, 35012-35020.	8.0	77
18	In Situ and Timed Extraction of Cellular Peptides from Live HeLa Cells by Photo-Switchable Mesoporous Silica Nanocarriers. Analytical Chemistry, 2016, 88, 8380-8384.	6.5	13

#	Article	IF	CITATION
19	One-Pot Approach to Prepare Organo-silica Hybrid Capillary Monolithic Column with Intact Mesoporous Silica Nanoparticle as Building Block. Scientific Reports, 2016, 6, 34718.	3.3	11
20	Biological characteristics of adipose tissueâ€derived stem cells labeled with amineâ€surfaceâ€modified superparamagnetic iron oxide nanoparticles. Cell Biology International, 2015, 39, 899-909.	3.0	11
21	Interlayer Water Regulates the Bio-nano Interface of a \hat{I}^2 -sheet Protein stacking on Graphene. Scientific Reports, 2015, 5, 7572.	3.3	11
22	The on-bead digestion of protein corona on nanoparticles by trypsin immobilized on the magnetic nanoparticle. Journal of Chromatography A, 2014, 1334, 55-63.	3.7	20
23	Functionalized mesoporous carbon nanoparticles for targeted chemo-photothermal therapy of cancer cells under near-infrared irradiation. RSC Advances, 2014, 4, 33986-33997.	3.6	56
24	Nanoparticle size matters in the formation of plasma protein coronas on Fe3O4 nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014, 121, 354-361.	5.0	71
25	The impact of the number of layers of a graphene nanopore on DNA translocation. Soft Matter, 2013, 9, 960-966.	2.7	52
26	A poly(ethylene glycol)-brush decorated magnetic polymer for highly specific enrichment of phosphopeptides. Chemical Science, 2012, 3, 2828.	7.4	95
27	Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. Journal of Chromatography A, 2008, 1184, 369-392.	3.7	251
28	Separation of peptides on mixed mode of reversed-phase and ion-exchange capillary electrochromatography with a monolithic column. Electrophoresis, 2002, 23, 1239-1245.	2.4	75
29	Capillary Electrochromatography for Separation of Peptides Driven with Electrophoretic Mobility on Monolithic Column. Analytical Chemistry, 2001, 73, 4918-4923.	6.5	103
30	Microorganisms as bioâ€filters to mitigate greenhouse gas emissions from highâ€altitude permafrost revealed by nanoporeâ€based metagenomics. , 0, , .		8