Yuancheng Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8876115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines. Chinese Chemical Letters, 2022, 33, 2736-2740.	9.0	11
2	Detection and Removal of Mercury Ions in Water by a Covalent Organic Framework Rich in Sulfur and Nitrogen. ACS Applied Polymer Materials, 2022, 4, 849-858.	4.4	22
3	Study on the influence of the introduction of the thiophene group on the photocatalytic performance of polymer. High Performance Polymers, 2021, 33, 623-634.	1.8	0
4	Emission layer of F4TCNQ-Doped nanorods for high-efficient red light-emitting diodes. Organic Electronics, 2020, 76, 105460.	2.6	5
5	Effective design of novel low band gap acceptors for non-fullerene solar cells via modulating molecular planarity and F atom substitution. Materials Letters, 2020, 258, 126785.	2.6	1
6	Degradation of 4-nitrophenol by electrocatalysis and advanced oxidation processes using Co3O4@C anode coupled with simultaneous CO2 reduction via SnO2/CC cathode. Chinese Chemical Letters, 2020, 31, 1961-1965.	9.0	118
7	Efficient Capture of Volatile Iodine by Thiophene-Containing Porous Organic Polymers. ACS Applied Polymer Materials, 2020, 2, 5121-5128.	4.4	36
8	Chlorination and thiophene strategies to adjust molecular energy levels for high-performance organic polymer solar cells. Synthetic Metals, 2020, 268, 116509.	3.9	5
9	Effects of Thiophene and Benzene Ring Accumulation on the Photocatalytic Performance of Polymers. ACS Omega, 2020, 5, 22674-22681.	3.5	1
10	Effect of chlorination and fluorination of benzothiadiazole on the performance of polymer solar cells. Journal of Applied Polymer Science, 2020, 137, 49006.	2.6	3
11	Exploring the Effect of the Number of Characteristic Groups in Melaminebased Polymers on the Photocatalytic Performance. Current Chinese Science, 2020, 1, 141-150.	0.5	0
12	Tuning the morphology of the active layer of organic solar cells by spin 1/2 radicals. New Journal of Chemistry, 2019, 43, 13998-14008.	2.8	4
13	Effective design of A-D-A small molecules for high performance organic solar cells via F atom substitution and thiophene bridge. Chinese Chemical Letters, 2019, 30, 2263-2265.	9.0	8
14	Water/Alcohol Soluble Thickness-Insensitive Hyperbranched Perylene Diimide Electron Transport Layer Improving the Efficiency of Organic Solar Cells. Polymers, 2019, 11, 655.	4.5	8
15	Fluorination effects of A-D-A small molecule donors based benzotriazole for organic solar cells. Synthetic Metals, 2019, 251, 95-103.	3.9	9
16	Novel D-A type dyes based on BODIPY for solution processed organic polymer solar cells. Dyes and Pigments, 2019, 162, 671-679.	3.7	15
17	Side chain triphenylamine-based conjugated polymers for the preparation of efficient heterojunction solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 2235-2245.	2.2	2
18	Highly flattened donor-acceptor polymers based on fluoride-substituent acceptors for efficient heterojunction solar cells. Solar Energy, 2018, 166, 450-457.	6.1	20

YUANCHENG QIN

#	Article	IF	CITATIONS
19	Hyperbranched small-molecule electrolyte as cathode interfacial layers for improving the efficiency of organic photovoltaics. Journal of Materials Science, 2018, 53, 7715-7724.	3.7	3
20	Tuning the performance of the non-fullerene organic solar cells by the polarizability. RSC Advances, 2018, 8, 3809-3815.	3.6	10
21	Electron transport layer-free polymer solar cells show 40% higher efficiency than using ZnO transparent cathode. Journal of Materials Science: Materials in Electronics, 2018, 29, 11296-11305.	2.2	5
22	Optimizing F content of donor units by ternary copolymerization for effective heterojunction solar cells. Synthetic Metals, 2018, 246, 178-184.	3.9	1
23	Diblock conjugated polyelectrolyte electron transport layer modulating the morphology of the active layer for efficient nonfullerene organic solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 18458-18464.	2.2	3
24	Synthesis, characterization of chiral poly(ferrocenyl-schiff base) iron(II) complexes/RGO composites with enhanced microwave absorption properties. Polymer, 2018, 150, 301-310.	3.8	24
25	Efficient heterojunction solar cells based on the synergy between planarity and dipole moment in fluorinated-thienothiophenes-based donor-acceptor polymers. Synthetic Metals, 2018, 245, 42-50.	3.9	9
26	Thieno[3,4-b]pyrazine and 9,9-di-n-octylfluorene based copolymer for efficient inorganic-organic hybrid solar cells. Inorganic and Nano-Metal Chemistry, 2017, 47, 60-64.	1.6	2
27	Nd ₂ (S, Se, Te) ₃ Colloidal Quantum Dots: Synthesis, Energy Level Alignment, Charge Transfer Dynamics, and Their Applications to Solar Cells. Advanced Functional Materials, 2016, 26, 254-266.	14.9	53
28	Novel benzo(1,2-b:4,5-b')dithiophene-based donor–acceptor conjugated polymes for polymer solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 9920-9928.	2.2	4
29	Tuning the fluorescence lifetime of donor polymers containing different proportion of electron withdrawing groups inhybrid solar cells. Synthetic Metals, 2016, 221, 19-24.	3.9	2
30	Simple synthesis regarding novel bianchored metal free organic dyes based on indole for dye sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 3974-3981.	2.2	3
31	Top-down Strategy toward Versatile Graphene Quantum Dots for Organic/Inorganic Hybrid Solar Cells. ACS Sustainable Chemistry and Engineering, 2015, 3, 637-644.	6.7	75
32	Small bandgap naphthalene diimide copolymers for efficient inorganic–organic hybrid solar cells. RSC Advances, 2015, 5, 2147-2154.	3.6	8