Baofeng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8876027/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Advances in Multidimensional Separation for Proteome Analysis. Analytical Chemistry, 2019, 91, 264-276.	3.2	37
2	Bis(zinc(II)-dipicolylamine)-functionalized sub-2 μm core-shell microspheres for the analysis of N-phosphoproteome. Nature Communications, 2020, 11, 6226.	5.8	34
3	Nogo-B receptor promotes epithelial–mesenchymal transition in non-small cell lung cancer cells through the Ras/ERK/Snail1 pathway. Cancer Letters, 2018, 418, 135-146.	3.2	33
4	Comprehensive proteome quantification reveals NgBR as a new regulator for epithelial–mesenchymal transition of breast tumor cells. Journal of Proteomics, 2015, 112, 38-52.	1.2	32
5	Nogo-B receptor promotes the chemoresistance of human hepatocellular carcinoma via the ubiquitination of p53 protein. Oncotarget, 2016, 7, 8850-8865.	0.8	32
6	Antibodyâ€Free Hydrogel with the Synergistic Effect of Cell Imprinting and Boronate Affinity: Toward the Selective Capture and Release of Undamaged Circulating Tumor Cells. Small, 2020, 16, e1904199.	5.2	29
7	In-Depth Proteome Coverage by Improving Efficiency for Membrane Proteome Analysis. Analytical Chemistry, 2017, 89, 5179-5185.	3.2	26
8	Enzymatic Reactor with Trypsin Immobilized on Graphene Oxide Modified Polymer Microspheres To Achieve Automated Proteome Quantification. Analytical Chemistry, 2017, 89, 6324-6329.	3.2	26
9	Multi-omics analysis to reveal disorders of cell metabolism and integrin signaling pathways induced by PM2.5. Journal of Hazardous Materials, 2022, 424, 127573.	6.5	25
10	Molecular Dynamics Simulation-assisted Ionic Liquid Screening for Deep Coverage Proteome Analysis. Molecular and Cellular Proteomics, 2020, 19, 1724-1737.	2.5	24
11	In-Depth <i>In Vivo</i> Crosslinking in Minutes by a Compact, Membrane-Permeable, and Alkynyl-Enrichable Crosslinker. Analytical Chemistry, 2022, 94, 7551-7558.	3.2	21
12	Quantitative proteomics analysis of deer antlerogenic periosteal cells reveals potential bioactive factors in velvet antlers. Journal of Chromatography A, 2020, 1609, 460496.	1.8	14
13	Surface sieving coordinated IMAC material for purification of His-tagged proteins. Analytica Chimica Acta, 2018, 997, 9-15.	2.6	13
14	A Multiplex Fragment-Ion-Based Method for Accurate Proteome Quantification. Analytical Chemistry, 2019, 91, 3921-3928.	3.2	13
15	Site-Specific Quantification of Persulfidome by Combining an Isotope-Coded Affinity Tag with Strong Cation-Exchange-Based Fractionation. Analytical Chemistry, 2019, 91, 14860-14864.	3.2	11
16	Comprehensive Analysis of Protein N-Terminome by Guanidination of Terminal Amines. Analytical Chemistry, 2020, 92, 567-572.	3.2	11
17	Fast MS/MS acquisition without dynamic exclusion enables precise and accurate quantification of proteome by MS/MS fragment intensity. Scientific Reports, 2016, 6, 26392.	1.6	9
18	Thermodynamical Origin of Nonmonotonic Inserting Behavior of Imidazole Ionic Liquids into the Lipid Bilayer. Journal of Physical Chemistry Letters, 2021, 12, 9926-9932.	2.1	9

BAOFENG ZHAO

#	Article	IF	CITATIONS
19	Targeted killing of tumor cells based on isoelectric point suitable nanoceria-rod with high oxygen vacancies. Journal of Materials Chemistry B, 2022, 10, 1410-1417.	2.9	9
20	Integrated platform with combination of on-line protein digestion, isotope dimethyl labeling and multidimensional peptide separation for high-throughput proteome quantification. Analytica Chimica Acta, 2018, 1000, 172-179.	2.6	8
21	Proteomic Analysis Reveals that EPHX1 Contributes to 5â€Fluorouracil Resistance in a Human Hepatocellular Carcinoma Cell Line. Proteomics - Clinical Applications, 2020, 14, e1900080.	0.8	8
22	Quantitative proteomics identifies FOLR1 to drive sorafenib resistance via activating autophagy in hepatocellular carcinoma cells. Carcinogenesis, 2021, 42, 753-761.	1.3	7
23	Ethane-Bridged Hybrid Monolithic Column with Large Mesopores for Boosting Top-Down Proteomic Analysis. Analytical Chemistry, 2022, 94, 6172-6179.	3.2	7
24	Aptamer functionalized magnetic graphene oxide nanocomposites for highly selective capture of histones. Electrophoresis, 2019, 40, 2135-2141.	1.3	6
25	Isolation and identification of phosphorylated lysine peptides by retention time difference combining dimethyl labeling strategy. Science China Chemistry, 2019, 62, 708-712.	4.2	6
26	Smart Cutter: An Efficient Strategy for Increasing the Coverage of Chemical Cross-Linking Analysis. Analytical Chemistry, 2020, 92, 1097-1105.	3.2	6
27	Fully automated sample treatment method for high throughput proteome analysis. Science China Chemistry, 2021, 64, 313-321.	4.2	6
28	The Nogoâ€B receptor promotes human hepatocellular carcinoma cell growth via the Akt signal pathway. Journal of Cellular Biochemistry, 2018, 119, 7738-7746.	1.2	5
29	Integrated proteomic sample preparation with combination of on-line high-abundance protein depletion, denaturation, reduction, desalting and digestion to achieve high throughput plasma proteome quantification. Analytica Chimica Acta, 2021, 1154, 338343.	2.6	5
30	Ionic Liquid-Based Extraction System for In-Depth Analysis of Membrane Protein Complexes. Analytical Chemistry, 2022, 94, 758-767.	3.2	5
31	A1 Ions: Peptide-Specific and Intensity-Enhanced Fragment Ions for Accurate and Multiplexed Proteome Quantitation. Analytical Chemistry, 2022, 94, 7637-7646.	3.2	5
32	The cytotoxicity of PM2.5 and its effect on the secretome of normal human bronchial epithelial cells. Environmental Science and Pollution Research, 2022, 29, 75966-75977.	2.7	5
33	All-Ion Monitoring-Directed Low-Abundance Protein Quantification Reveals CALB2 as a Key Promoter in Hepatocellular Carcinoma Metastasis. Analytical Chemistry, 2022, , .	3.2	4
34	Surface-Charged Hybrid Monolithic Column for MS-Compatible Peptide Separation with High Peak Capacity and Its Application in Proteomic Analysis. Analytical Chemistry, 2022, 94, 9525-9529.	3.2	4
35	Nogo-B receptor is required for stabilizing TGF-Î ² type Ireceptor and promotes the TGF-Î ² 1-induced epithelial-to-mesenchymal transition of non-small cell lung cancer. Journal of Cancer, 2021, 12, 717-725.	1.2	3
36	Zn(II)-DPA functionalized graphene oxide two-dimensional nanocomposites for N-phosphoproteins enrichment. Talanta, 2022, 243, 123384.	2.9	2

#	Article	IF	CITATIONS
37	Quantitative proteomics of epigenetic histone modifications in MCF-7 cells under estradiol stimulation. Analytical Methods, 2021, 13, 469-476.	1.3	0