Celine C Berthier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8875133/publications.pdf

Version: 2024-02-01

34 papers

3,642 citations

304743

22

h-index

35 g-index

37 all docs

37 docs citations

37 times ranked 5502 citing authors

#	Article	IF	CITATIONS
1	Netting Neutrophils Induce Endothelial Damage, Infiltrate Tissues, and Expose Immunostimulatory Molecules in Systemic Lupus Erythematosus. Journal of Immunology, 2011, 187, 538-552.	0.8	1,039
2	The immune cell landscape in kidneys of patients with lupus nephritis. Nature Immunology, 2019, 20, 902-914.	14.5	501
3	Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Science Translational Medicine, 2015, 7, 316ra193.	12.4	304
4	Enhanced Expression of Janus Kinase–Signal Transducer and Activator of Transcription Pathway Members in Human Diabetic Nephropathy. Diabetes, 2009, 58, 469-477.	0.6	262
5	Cross-Species Transcriptional Network Analysis Defines Shared Inflammatory Responses in Murine and Human Lupus Nephritis. Journal of Immunology, 2012, 189, 988-1001.	0.8	196
6	Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Annals of the Rheumatic Diseases, 2018, 77, 1653-1664.	0.9	162
7	Lupus Nephritis Susceptibility Loci in Women with Systemic Lupus Erythematosus. Journal of the American Society of Nephrology: JASN, 2014, 25, 2859-2870.	6.1	117
8	Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. JCI Insight, 2020, 5, .	5.0	108
9	A gene network regulated by the transcription factor VGLL3 as a promoter of sex-biased autoimmune diseases. Nature Immunology, 2017, 18, 152-160.	14.5	98
10	IFN- \hat{l}^3 enhances cell-mediated cytotoxicity against keratinocytes via JAK2/STAT1 in lichen planus. Science Translational Medicine, 2019, 11, .	12.4	85
11	Enhanced Inflammasome Activity in Systemic Lupus Erythematosus Is Mediated via Type I Interferon–Induced Upâ€Regulation of Interferon Regulatory Factor 1. Arthritis and Rheumatology, 2017, 69, 1840-1849.	5.6	75
12	Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2017, 28, 2961-2972.	6.1	65
13	SARS-CoV-2 receptor networks in diabetic and COVID-19–associated kidney disease. Kidney International, 2020, 98, 1502-1518.	5.2	64
14	Integrated urine proteomics and renal single-cell genomics identify an IFN- \hat{l}^3 response gradient in lupus nephritis. JCI Insight, 2020, 5, .	5.0	57
15	Nonlesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation. Science Translational Medicine, 2022, 14, eabn2263.	12.4	52
16	Identification of Stageâ€Specific Genes Associated With Lupus Nephritis and Response to Remission Induction in (NZB × NZW)F1 and NZM2410 Mice. Arthritis and Rheumatology, 2014, 66, 2246-2258.	5.6	50
17	Molecular Profiling of Cutaneous Lupus Lesions Identifies Subgroups Distinct from Clinical Phenotypes. Journal of Clinical Medicine, 2019, 8, 1244.	2.4	45
18	Hypersensitive IFN Responses in Lupus Keratinocytes Reveal Key Mechanistic Determinants in Cutaneous Lupus. Journal of Immunology, 2019, 202, 2121-2130.	0.8	44

#	Article	IF	CITATIONS
19	Transcriptomic characterization of prurigo nodularis and the therapeutic response to nemolizumab. Journal of Allergy and Clinical Immunology, 2022, 149, 1329-1339.	2.9	40
20	Urine Proteomics and Renal <scp>Singleâ€Cell</scp> Transcriptomics Implicate Interleukinâ€16 in Lupus Nephritis. Arthritis and Rheumatology, 2022, 74, 829-839.	5.6	38
21	Staphylococcus aureus Colonization Is Increased on Lupus Skin Lesions and Is Promoted by IFN-Mediated Barrier Disruption. Journal of Investigative Dermatology, 2020, 140, 1066-1074.e4.	0.7	34
22	The Molecular Phenotype of Endocapillary Proliferation: Novel Therapeutic Targets for IgA Nephropathy. PLoS ONE, 2014, 9, e103413.	2.5	30
23	IL18-containing 5-gene signature distinguishes histologically identical dermatomyositis and lupus erythematosus skin lesions. JCI Insight, 2020, 5, .	5.0	27
24	B Cell Signatures Distinguish Cutaneous Lupus Erythematosus Subtypes and the Presence of Systemic Disease Activity. Frontiers in Immunology, 2021, 12, 775353.	4.8	24
25	Urine Single-Cell RNA Sequencing in Focal Segmental Glomerulosclerosis Reveals Inflammatory Signatures. Kidney International Reports, 2022, 7, 289-304.	0.8	21
26	Exome Chip Analyses and Genetic Risk for IgA Nephropathy among Han Chinese. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 213-224.	4.5	14
27	A systems approach to renal inflammation in SLE. Clinical Immunology, 2017, 185, 109-118.	3.2	13
28	Comparison of Lesional Juvenile Myositis and Lupus Skin Reveals Overlapping Yet Unique Disease Pathophysiology. Arthritis and Rheumatology, 2021, 73, 1062-1072.	5.6	13
29	ABIN1 Determines Severity of Glomerulonephritis via Activation of Intrinsic Glomerular Inflammation. American Journal of Pathology, 2017, 187, 2799-2810.	3.8	12
30	Glomerular endothelial cell-podocyte stresses and crosstalk in structurally normal kidney transplants. Kidney International, 2022, 101, 779-792.	5.2	11
31	Gene expression profiles of diabetic kidney disease and neuropathy in <i>eNOS</i> knockout mice: Predictors of pathology and RAS blockade effects. FASEB Journal, 2021, 35, e21467.	0.5	10
32	From the Large Scale Expression Analysis of Lupus Nephritis to Targeted Molecular Medicine. Journal of Data Mining in Genomics & Proteomics, 2012, 03, .	0.5	10
33	Safety of procuring research tissue during a clinically indicated kidney biopsy from patients with lupus: data from the Accelerating Medicines Partnership RA/SLE Network. Lupus Science and Medicine, 2021, 8, e000522.	2.7	5
34	Reversible dysregulation of renal circadian rhythm in lupus nephritis. Molecular Medicine, 2021, 27, 99.	4.4	4