Cecilia Casas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8874876/publications.pdf

Version: 2024-02-01

		1163117	1199594	
14	211	8	12	
papers	citations	h-index	g-index	
14	14	14	252	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Soil microbial community responses to the fungal endophyte Neotyphodium in Italian ryegrass. Plant and Soil, 2011, 340, 347-355.	3.7	57
2	Phenomic networks reveal largely independent root and shoot adjustment in waterlogged plants of <scp><i>L</i></scp> <i>otus japonicus</i>	5.7	26
3	Neotyphodium fungal endophyte in tall fescue (Schedonorus phoenix): a comparison of three Northern European wild populations and the cultivar Kentucky-31. Fungal Diversity, 2013, 60, 15-24.	12.3	22
4	No escape? Costs and benefits of leaf de-submergence in the pasture grass Chloris gayana under different flooding regimes. Functional Plant Biology, 2017, 44, 899.	2.1	21
5	Consequences of grazing on the vertical transmission of a fungal <i>Neotyphodium</i> symbiont in an annual grass population. Austral Ecology, 2012, 37, 620-628.	1.5	20
6	Inferring field performance from drought experiments can be misleading: The case of symbiosis between grasses and Epichloë fungal endophytes. Journal of Arid Environments, 2016, 132, 60-62.	2.4	19
7	What happens next? Legacy effects induced by grazing and grass-endophyte symbiosis on thistle plants and their floral visitors. Plant and Soil, 2016, 405, 211-229.	3.7	14
8	Efecto de la tasa de descuento sobre la priorización de alternativas de manejo del matorral Norpatagónico argentino. Bosque, 2018, 39, 217-226.	0.3	8
9	The role of plant size in the selection of glyphosate resistance in <scp><i>Sorghum halepense</i></scp> . Pest Management Science, 2018, 74, 2460-2467.	3.4	7
10	Loss of fungal symbionts at the arid limit of the distribution range in a native Patagonian grass—Resource ecoâ€physiological relations. Functional Ecology, 2022, 36, 583-594.	3.6	7
11	The enhancement of invasion ability of an annual grass by its fungal endophyte depends on recipient community structure. Biological Invasions, 2016, 18, 1853-1865.	2.4	5
12	A highly productive grass improves chemical and biological properties but does not aggregate stability in saline-sodic lowlands in Argentina. Archives of Agronomy and Soil Science, 2020, 66, 1532-1545.	2.6	5
13	A fungal endophyte of an annual weed reduces host competitive ability and confers associational protection to wheat. Basic and Applied Ecology, 2021, 50, 16-24.	2.7	0
14	Mite density, not diversity, declines with biomass removal in Patagonian woodlands. Applied Soil Ecology, 2022, 169, 104242.	4.3	0