Biao Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8874665/publications.pdf Version: 2024-02-01

		23879	35168
131	11,169	60	102
papers	citations	h-index	g-index
131	131	131	5133
151	151	131	5155
all docs	docs citations	times ranked	citing authors

Βιλο Ζηλο

#	Article	IF	CITATIONS
1	Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption. Journal of Materials Science and Technology, 2022, 107, 100-110.	5.6	60
2	Structure-dependent electromagnetic wave absorbing properties of bowl-like and honeycomb TiO2/CNT composites. Journal of Materials Science and Technology, 2022, 109, 105-113.	5.6	20
3	Electromagnetic Interference Shielding Performance of Flexible, Hydrophobic Honeycombâ€6tructured Ag@Ti ₃ C ₂ T <i>_x</i> Composites. Advanced Electronic Materials, 2022, 8, 2101028.	2.6	12
4	Multi-dimensional C@NiCo-LDHs@Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation. Carbon, 2022, 191, 625-635.	5.4	95
5	Design of 3D lightweight Ti3C2T MXene porous film with graded holes for efficient electromagnetic interference shielding performance. Ceramics International, 2022, 48, 14578-14586.	2.3	14
6	Layered Foam/Film Polymer Nanocomposites with Highly Efficient EMI Shielding Properties and Ultralow Reflection. Nano-Micro Letters, 2022, 14, 19.	14.4	76
7	Iron-encapsulated CNTs on carbon fiber with high-performance EMI shielding and electrocatalytic activity. Advanced Composites and Hybrid Materials, 2022, 5, 2429-2439.	9.9	30
8	Achieving ultra-broadband electromagnetic wave absorption in high-entropy transition metal carbides (HE TMCs). Journal of Advanced Ceramics, 2022, 11, 545-555.	8.9	50
9	Twoâ€Dimensional C/MoS ₂ â€Functionalized Ti ₃ C ₂ T <i>_x</i> Nanosheets for Achieving Strong Electromagnetic Wave Absorption. Advanced Electronic Materials, 2022, 8, .	2.6	14
10	Promising PVDF-CNT-Graphene-NiCo chains composite films with excellent electromagnetic interference shielding performance. Journal of Alloys and Compounds, 2022, 908, 164538.	2.8	23
11	High-Density Anisotropy Magnetism Enhanced Microwave Absorption Performance in Ti ₃ C ₂ T _{<i>x</i>} MXene@Ni Microspheres. ACS Nano, 2022, 16, 1150-1159.	7.3	249
12	Selective assembly of magnetic nano-antenna for electromagnetic dissipation. Journal of Materials Chemistry A, 2022, 10, 10909-10915.	5.2	8
13	Synthesis of super-hydrophobic and self-cleaning magnetic graphene aerogel with excellent microwave absorption properties. Diamond and Related Materials, 2022, 126, 109045.	1.8	10
14	High-entropy spinel ferrites MFe2O4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) with tunable electromagnetic properties and strong microwave absorption. Journal of Advanced Ceramics, 2022, 11, 754-768.	8.9	76
15	Ti ₃ C ₂ T _{<i>x</i>} /rGO aerogel towards high electromagnetic wave absorption and thermal resistance. CrystEngComm, 2022, 24, 4556-4563.	1.3	13
16	Multiscale core-shell CoO@Coâ,¬PGN/CNTs composites aerogels for ultra-wide microwave absorption. Composites Science and Technology, 2022, 225, 109524.	3.8	16
17	Promoting the electromagnetic interference shielding of Ti3C2T flakes by loading Fe3O4 nanoparticles: Insights into the performance of oligo-layers exposed to microwave interferences. Ceramics International, 2022, , .	2.3	12
18	Intrinsic mechanism and multiphysics analysis of electromagnetic wave absorbing materials: New horizons and breakthrough. Journal of Materials Science and Technology, 2022, 130, 136-156.	5.6	53

Βιάο Ζηλο

#	Article	IF	CITATIONS
19	Engineered core-shell SiO2@Ti3C2Tx composites: Towards ultra-thin electromagnetic wave absorption materials. Chemical Engineering Journal, 2022, 446, 137260.	6.6	100
20	Recyclable magnetic carbon foams possessing voltage-controllable electromagnetic shielding and oil/water separation. Carbon, 2022, 197, 570-578.	5.4	15
21	Engineering polarization surface of hierarchical ZnO microspheres via spray-annealing strategy for wide-frequency electromagnetic wave absorption. Journal of Materials Science and Technology, 2022, 131, 231-239.	5.6	26
22	Microwave-assisted hydrothermal synthesis of 2D/2D MoS2/Ti3C2T heterostructure for enhanced microwave absorbing performance. Journal of Alloys and Compounds, 2022, 923, 166253.	2.8	14
23	Morphology-Evolved Succulent-like FeCo Microarchitectures with Magnetic Configuration Regulation for Enhanced Microwave Absorption. ACS Applied Materials & Interfaces, 2022, 14, 32369-32378.	4.0	16
24	Joule-heated flexible carbon composite towards the boosted electromagnetic wave shielding properties. Advanced Composites and Hybrid Materials, 2022, 5, 3012-3022.	9.9	25
25	Investigation of the pore-size dependent microwave absorption properties of honeycomb SnO2. Journal of Materials Science: Materials in Electronics, 2021, 32, 25725-25734.	1.1	5
26	(Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B: A novel high-entropy monoboride with good electromagnetic interference shielding performance in K-band. Journal of Materials Science and Technology, 2021, 77, 58-65.	5.6	25
27	Electromagnetic wave absorbing properties of Cr 2 AlB 2 powders and the effect of highâ€ŧemperature oxidation. Journal of the American Ceramic Society, 2021, 104, 2213-2224.	1.9	15
28	Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C. Journal of Materials Science and Technology, 2021, 74, 105-118.	5.6	72
29	One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/borates (HE REB6/HE REBO3) composite powders. Journal of Advanced Ceramics, 2021, 10, 62-77.	8.9	88
30	Enhancement of electromagnetic interference shielding from the synergism between Cu@Ni nanorods and carbon materials in flexible composite films. Materials Advances, 2021, 2, 718-727.	2.6	20
31	Advances in electromagnetic shielding properties of composite foams. Journal of Materials Chemistry A, 2021, 9, 8896-8949.	5.2	184
32	Opportunities and challenges in microwave absorption of nickel–carbon composites. Physical Chemistry Chemical Physics, 2021, 23, 20795-20834.	1.3	29
33	Effect of C:SiO ₂ Ratio on Heating Behavior and Photoluminescence Property of SiC by Microwave. Science of Advanced Materials, 2021, 13, 591-596.	0.1	0
34	Multi-phase heterostructures of flower-like Ni(NiO) decorated on two-dimensional Ti3C2Tx/TiO2 for high-performance microwave absorption properties. Ceramics International, 2021, 47, 10764-10772.	2.3	26
35	Liquidâ€phaseâ€induced synthesis of SiC rods by microwave heating. Journal of Materials Science: Materials in Electronics, 2021, 32, 10803-10808.	1.1	1
36	High-entropy ceramics: Present status, challenges, and a look forward. Journal of Advanced Ceramics, 2021, 10, 385-441.	8.9	510

Βίαο Ζήαο

#	Article	IF	CITATIONS
37	Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon, 2021, 176, 411-420.	5.4	162
38	Unique nanoporous structure derived from Co3O4–C and Co/CoO–C composites towards the ultra-strong electromagnetic absorption. Composites Part B: Engineering, 2021, 213, 108731.	5.9	60
39	High-Performance Joule Heating and Electromagnetic Shielding Properties of Anisotropic Carbon Scaffolds. ACS Applied Materials & Interfaces, 2021, 13, 29101-29112.	4.0	51
40	Enhanced electromagnetic wave absorption performance of polymer/SiC-nanowire/MXene (Ti3C2Tx) composites. Carbon, 2021, 179, 408-416.	5.4	66
41	Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene. Chemical Engineering Journal, 2021, 415, 128930.	6.6	54
42	Microwave induced in-situ formation of SiC nanowires on SiCNO ceramic aerogels with excellent electromagnetic wave absorption performance. Journal of Advanced Ceramics, 2021, 10, 1140-1151.	8.9	76
43	Enabling highly efficient and broadband electromagnetic wave absorption by tuning impedance match in high-entropy transition metal diborides (HE TMB2). Journal of Advanced Ceramics, 2021, 10, 1299-1316.	8.9	46
44	Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties. Journal of Advanced Ceramics, 2021, 10, 1042-1051.	8.9	96
45	Tailoring Microwave Electromagnetic Responses in Ti ₃ C ₂ T _{<i>x</i>} MXene with Fe ₃ O ₄ Nanoparticle Decoration via a Solvothermal Method. Journal of Physical Chemistry C, 2021, 125, 19914-19924.	1.5	33
46	Lightweight, multifunctional MXene/polymer composites with enhanced electromagnetic wave absorption and high-performance thermal conductivity. Carbon, 2021, 183, 301-312.	5.4	52
47	High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance. Journal of Materials Science and Technology, 2021, 87, 155-166.	5.6	36
48	Co decorated polymer-derived SiCN ceramic aerogel composites with ultrabroad microwave absorption performance. Journal of Alloys and Compounds, 2020, 813, 152007.	2.8	40
49	Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure. Journal of Materials Chemistry C, 2020, 8, 58-70.	2.7	120
50	Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. Journal of Materials Chemistry C, 2020, 8, 500-509.	2.7	76
51	Enhanced Electromagnetic Wave-Absorbing Performance of Magnetic Nanoparticles-Anchored 2D Ti ₃ C ₂ T <i>_x</i> MXene. ACS Applied Materials & Interfaces, 2020, 12, 2644-2654.	4.0	194
52	Investigation of adjacent spacing dependent microwave absorption properties of lamellar structural Ti3C2Tx MXenes. Advanced Powder Technology, 2020, 31, 808-815.	2.0	62
53	An Effective Design Strategy for the Sandwich Structure of PVDF/GNP-Ni-CNT Composites with Remarkable Electromagnetic Interference Shielding Effectiveness. ACS Applied Materials & Interfaces, 2020, 12, 36568-36577.	4.0	112
54	Highly Compressible Polymer Composite Foams with Thermal Heating-Boosted Electromagnetic Wave Absorption Abilities. ACS Applied Materials & Interfaces, 2020, 12, 50793-50802.	4.0	47

Βίαο Ζήαο

#	Article	IF	CITATIONS
55	Galvanic Replacement Reaction Involving Core–Shell Magnetic Chains and Orientationâ€Tunable Microwave Absorption Properties. Small, 2020, 16, e2003502.	5.2	322
56	Flexible PEBAX/graphene electromagnetic shielding composite films with a negative pressure effect of resistance for pressure sensors applications. RSC Advances, 2020, 10, 1535-1543.	1.7	29
57	Light-weight and high-efficiency electromagnetic wave shielding properties based on waste straw porous carbon. Journal of Materials Science: Materials in Electronics, 2020, 31, 4963-4971.	1.1	10
58	Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides. Journal of Materials Science and Technology, 2020, 47, 216-222.	5.6	72
59	Viscoelastic and Magnetically Aligned Flaky Fe-Based Magnetorheological Elastomer Film for Wide-Bandwidth Electromagnetic Wave Absorption. Industrial & Engineering Chemistry Research, 2020, 59, 3425-3437.	1.8	26
60	Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. Journal of Materials Chemistry C, 2020, 8, 7401-7410.	2.7	70
61	2D-layered Ti3C2/TiO2 hybrids derived from Ti3C2 MXenes for enhanced electromagnetic wave absorption. Ceramics International, 2020, 46, 17085-17092.	2.3	50
62	Exceptionally porous three-dimensional architectural nanostructure derived from CNTs/graphene aerogel towards the ultra-wideband EM absorption. Composites Part B: Engineering, 2020, 196, 108122.	5.9	140
63	A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss. Journal of Materials Chemistry A, 2019, 7, 133-140.	5.2	111
64	Flexible PVDF/CNTs/Ni@CNTs composite films possessing excellent electromagnetic interference shielding and mechanical properties under heat treatment. Carbon, 2019, 155, 34-43.	5.4	99
65	Insight into the Directional Thermal Transport of Hexagonal Boron Nitride Composites. ACS Applied Materials & Interfaces, 2019, 11, 41726-41735.	4.0	33
66	Novel two-dimensional Ti3C2TX/Ni-spheres hybrids with enhanced microwave absorption properties. Ceramics International, 2019, 45, 22880-22888.	2.3	69
67	ZnO amounts-dependent electromagnetic wave absorption capabilities of Ni/ZnO composite microspheres. Journal of Materials Science: Materials in Electronics, 2019, 30, 19966-19976.	1.1	7
68	Enhanced electromagnetic wave absorbing nickel (Oxide)-Carbon nanocomposites. Ceramics International, 2019, 45, 24474-24486.	2.3	63
69	Symmetrical polyhedron-bowl Co/CoO with hexagonal plate to forward electromagnetic wave absorption ability. CrystEngComm, 2019, 21, 816-826.	1.3	74
70	Promising Ti ₃ C ₂ T <i>_x</i> MXene/Ni Chain Hybrid with Excellent Electromagnetic Wave Absorption and Shielding Capacity. ACS Applied Materials & Interfaces, 2019, 11, 25399-25409.	4.0	337
71	Effect of iron concentration on the crystallization and electronic structure of sphalerite/marmatite: A DFT study. Minerals Engineering, 2019, 136, 168-174.	1.8	43
72	Seeds-induced synthesis of SiC by microwave heating. Ceramics International, 2019, 45, 9771-9775.	2.3	22

Βιάο Ζηλο

#	Article	IF	CITATIONS
73	The effect of hydrothermal temperature on the crystallographic phase of MnO2 and their microwave absorption properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 475-484.	1.1	15
74	Dissolution kinetics of lead from a lead-oxide ore that consists mainly of cerussite by trichloroacetic acid and optimization of dissolution conditions. Separation Science and Technology, 2019, 54, 828-836.	1.3	3
75	Enhanced microwave absorption properties of novel hierarchical core-shell δ/α MnO2 composites. Journal of Solid State Chemistry, 2019, 273, 192-198.	1.4	29
76	Poly(vinylidene fluoride) foams: a promising low- <i>k</i> dielectric and heat-insulating material. Journal of Materials Chemistry C, 2018, 6, 3065-3073.	2.7	110
77	Novel two-dimensional Ti ₃ C ₂ T _x MXenes/nano-carbon sphere hybrids for high-performance microwave absorption. Journal of Materials Chemistry C, 2018, 6, 5690-5697.	2.7	215
78	Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal) Tj ETQq0 C 509, 406-413.	0 rgBT /0 5.0	Overlock 10 150
79	Enhanced Thermal Conductivity of Graphene Nanoplatelet–Polymer Nanocomposites Fabricated via Supercritical Fluid-Assisted in Situ Exfoliation. ACS Applied Materials & Interfaces, 2018, 10, 1225-1236.	4.0	114
80	Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon, 2018, 127, 469-478.	5.4	169
81	A novel sponge-like 2D Ni/derivative heterostructure to strengthen microwave absorption performance. Physical Chemistry Chemical Physics, 2018, 20, 28623-28633.	1.3	101
82	Quick Heat Dissipation in Absorption-Dominated Microwave Shielding Properties of Flexible Poly(vinylidene fluoride)/Carbon Nanotube/Co Composite Films with Anisotropy-Shaped Co (Flowers) Tj ETQq0 0	04gBT /O	veølæck 10 T
83	Investigation on the growth mechanism of SiC whiskers during microwave synthesis. Physical Chemistry Chemical Physics, 2018, 20, 25799-25805.	1.3	25
84	Incorporating a microcellular structure into PVDF/graphene–nanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties. Journal of Materials Chemistry C, 2018, 6, 10292-10300.	2.7	165
85	Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. Journal of Materials Chemistry C, 2018, 6, 7128-7140.	2.7	98
86	Ultralight Microcellular Polymer–Graphene Nanoplatelet Foams with Enhanced Dielectric Performance. ACS Applied Materials & Interfaces, 2018, 10, 19987-19998.	4.0	79
87	Enhanced Electrical and Electromagnetic Interference Shielding Properties of Polymer–Graphene Nanoplatelet Composites Fabricated via Supercritical-Fluid Treatment and Physical Foaming. ACS Applied Materials & Interfaces, 2018, 10, 30752-30761.	4.0	156
88	Recent Advances on the Electromagnetic Wave Absorption Properties of Ni Based Materials. Engineered Science, 2018, , .	1.2	45
89	Hierarchical porous Ni@boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability. Physical Chemistry Chemical Physics, 2017, 19, 9128-9136.	1.3	112
90	Constructing hierarchical hollow CuS microspheres via a galvanic replacement reaction and their use as wide-band microwave absorbers. CrystEngComm, 2017, 19, 2178-2186.	1.3	121

Βιαό Ζηαό

2.1

#	Article	IF	CITATIONS
91	Facile design of a ZnO nanorod–Ni core–shell composite with dual peaks to tune its microwave absorption properties. RSC Advances, 2017, 7, 9294-9302.	1.7	106
92	Tailoring Microwave-Absorption Properties of Co x Ni y Alloy/RGO Nanocomposites with Tunable Atomic Ratios. Journal of Electronic Materials, 2017, 46, 2164-2171.	1.0	13
93	Ultralight polymer-derived ceramic aerogels with wide bandwidth and effective electromagnetic absorption properties. Journal of the European Ceramic Society, 2017, 37, 3973-3980.	2.8	60
94	Investigation on heating behavior during the preparation of SiC crystals by microwave sintering. International Journal of Applied Ceramic Technology, 2017, 14, 880-888.	1.1	12
95	An impedance match method used to tune the electromagnetic wave absorption properties of hierarchical ZnO assembled by porous nanosheets. CrystEngComm, 2017, 19, 3640-3648.	1.3	51
96	Flexible, Ultrathin, and High-Efficiency Electromagnetic Shielding Properties of Poly(Vinylidene) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 54 264
97	Lightweight porous Co ₃ O ₄ and Co/CoO nanofibers with tunable impedance match and configuration-dependent microwave absorption properties. CrystEngComm, 2017, 19, 6095-6106.	1.3	92

98	1D Cu@Ni nanorods anchored on 2D reduced graphene oxide with interfacial engineering to enhance microwave absorption properties. CrystEngComm, 2017, 19, 6579-6587.	1.3	62
00	Synthesis of core-shell fishbone-like Cu@Ni composites and their electromagnetic wave absorption	9.1	99

99	properties. Powder Technology, 2017, 319, 245-252.	2.1	22
100	Tunable electromagnetic shielding properties of conductive poly(vinylidene fluoride)/Ni chain composite films with negative permittivity. Journal of Materials Chemistry C, 2017, 5, 6954-6961.	2.7	139
101	Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Research, 2017, 10, 331-343.	5.8	342
102	Porous structure to improve microwave absorption properties of lamellar ZnO. Advanced Powder Technology, 2017, 28, 438-442.	2.0	34
103	Yolk–Shell Ni@SnO ₂ Composites with a Designable Interspace To Improve the Electromagnetic Wave Absorption Properties. ACS Applied Materials & Interfaces, 2016, 8, 28917-28925.	4.0	526
104	Microwave absorption properties of CoNi nanoparticles anchored on the reduced grapheme oxide. Journal of Materials Science: Materials in Electronics, 2016, 27, 8408-8415.	1.1	28
105	Morphology-Control Synthesis of a Core–Shell Structured NiCu Alloy with Tunable Electromagnetic-Wave Absorption Capabilities. ACS Applied Materials & Interfaces, 2015, 7, 12951-12960.	4.0	347
106	Enhanced microwave absorption capabilities of Ni microspheres after coating with SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2015, 26, 5393-5399.	1.1	33
107	Preparation of Honeycomb SnO ₂ Foams and Configuration-Dependent Microwave Absorption Features. ACS Applied Materials & amp; Interfaces, 2015, 7, 26217-26225.	4.0	163

Preparation of SnO2-coated Ni microsphere composites with controlled microwave absorption properties. Applied Surface Science, 2015, 332, 112-120. 108 3.146

Βιάο Ζηλο

#	Article	IF	CITATIONS
109	Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere–CuO nano-rice core–shell composite. Physical Chemistry Chemical Physics, 2015, 17, 6044-6052.	1.3	109
110	Facile synthesis of Ni/ZnO composite: Morphology control and microwave absorption properties. Journal of Magnetism and Magnetic Materials, 2015, 382, 78-83.	1.0	37
111	Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties. RSC Advances, 2015, 5, 9806-9814.	1.7	65
112	Time-sensitivity for the preparation and microwave absorption properties of core–shell structured Ni/TiO2 composite microspheres. Journal of Materials Science: Materials in Electronics, 2015, 26, 8848-8853.	1.1	8
113	Preparation and electromagnetic wave absorption properties of novel dendrite-like NiCu alloy composite. RSC Advances, 2015, 5, 42587-42590.	1.7	26
114	Facile preparation and enhanced microwave absorption properties of core–shell composite spheres composited of Ni cores and TiO ₂ shells. Physical Chemistry Chemical Physics, 2015, 17, 8802-8810.	1.3	144
115	Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. Journal of Materials Chemistry A, 2015, 3, 10345-10352.	5.2	474
116	In situ synthesis of novel urchin-like ZnS/Ni ₃ S ₂ @Ni composite with a core–shell structure for efficient electromagnetic absorption. Journal of Materials Chemistry C, 2015, 3, 10862-10869.	2.7	103
117	Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO ₂ hybrids. Dalton Transactions, 2015, 44, 15984-15993.	1.6	105
118	Facile Synthesis of Novel Heterostructure Based on SnO ₂ Nanorods Grown on Submicron Ni Walnut with Tunable Electromagnetic Wave Absorption Capabilities. ACS Applied Materials & Interfaces, 2015, 7, 18815-18823.	4.0	179
119	Effect of particle sizes on the microwave absorption properties of monodispersed Ni submicrospheres. Optik, 2015, 126, 4597-4600.	1.4	16
120	Investigation of the electromagnetic absorption properties of Ni@TiO ₂ and Ni@SiO ₂ composite microspheres with core–shell structure. Physical Chemistry Chemical Physics, 2015, 17, 2531-2539.	1.3	275
121	Preparation and enhanced microwave absorption properties of Ni microspheres coated with Sn6O4(OH)4 nanoshells. Powder Technology, 2015, 270, 20-26.	2.1	44
122	ZnS nanowall coated Ni composites: facile preparation and enhanced electromagnetic wave absorption. RSC Advances, 2014, 4, 61219-61225.	1.7	53
123	Solvothermal synthesis and electromagnetic absorption properties of pyramidal Ni superstructures. Journal of Materials Research, 2014, 29, 1431-1439.	1.2	7
124	Investigation on the electromagnetic wave absorption properties of Ni chains synthesized by a facile solvothermal method. Applied Surface Science, 2014, 307, 293-300.	3.1	72
125	Fabrication and enhanced microwave absorption properties of Al ₂ O ₃ nanoflake-coated Ni core–shell composite microspheres. RSC Advances, 2014, 4, 57424-57429.	1.7	84
126	Preparation and microwave absorption of porous hollow ZnO by CO2 soft-template. Advanced Powder Technology, 2014, 25, 1761-1766.	2.0	54

Βίαο Ζήαο

#	Article	IF	CITATIONS
127	Preparation and electromagnetic wave absorption of chain-like CoNi by a hydrothermal route. Journal of Magnetism and Magnetic Materials, 2014, 372, 195-200.	1.0	63
128	Effect of the TiO2 amounts on microwave absorption properties of Ni/TiO2 heterostructure composites. Physica B: Condensed Matter, 2014, 454, 120-125.	1.3	25
129	Facile synthesis and novel microwave electromagnetic properties of flower-like Ni structures by a solvothermal method. Journal of Materials Science: Materials in Electronics, 2014, 25, 3614-3621.	1.1	43
130	Enhanced electromagnetic wave absorption properties of Ni–SnO2 core–shell composites synthesized by a simple hydrothermal method. Materials Letters, 2014, 121, 118-121.	1.3	80
131	Electromagnetic Wave Absorption Properties of Core-Shell Ni-Based Composites. , 0, , .		1