Vanessa K Morris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8874561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fermentation of plantâ€based dairy alternatives by lactic acid bacteria. Microbial Biotechnology, 2022, 15, 1404-1421.	4.2	43
2	Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A. Redox Biology, 2020, 28, 101316.	9.0	17
3	Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins. Methods in Molecular Biology, 2020, 2073, 55-72.	0.9	4
4	Probing transient non-native states in amyloid beta fiber elongation by NMR. Chemical Communications, 2019, 55, 4483-4486.	4.1	46
5	Physiologically Important Electrolytes as Regulators of TDP-43 Aggregation and Droplet-Phase Behavior. Biochemistry, 2019, 58, 590-607.	2.5	24
6	The neuronal S100B protein is a calcium-tuned suppressor of amyloid-Î ² aggregation. Science Advances, 2018, 4, eaaq1702.	10.3	49
7	Epigallocatechin-3-gallate preferentially induces aggregation of amyloidogenic immunoglobulin light chains. Scientific Reports, 2017, 7, 41515.	3.3	23
8	MAK33 antibody light chain amyloid fibrils are similar to oligomeric precursors. PLoS ONE, 2017, 12, e0181799.	2.5	29
9	Fungal Hydrophobin Proteins Produce Self-Assembling Protein Films with Diverse Structure and Chemical Stability. Nanomaterials, 2014, 4, 827-843.	4.1	47
10	Solid-State NMR Structure Determination from Diagonal-Compensated, Sparsely Nonuniform-Sampled 4D Proton–Proton Restraints. Journal of the American Chemical Society, 2014, 136, 11002-11010.	13.7	61
11	Surface functionalization of carbon nanomaterials by selfâ€assembling hydrophobin proteins. Biopolymers, 2013, 99, 84-94.	2.4	35
12	Analysis of the Structure and Conformational States of DewA Gives Insight into the Assembly of the Fungal Hydrophobins. Journal of Molecular Biology, 2013, 425, 244-256.	4.2	47
13	Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins. Methods in Molecular Biology, 2013, 996, 119-129.	0.9	9
14	Solid‣tate NMR Spectroscopy of Functional Amyloid from a Fungal Hydrophobin: A Wellâ€Ordered β‣heet Core Amidst Structural Heterogeneity. Angewandte Chemie - International Edition, 2012, 51, 12621-12625.	13.8	35
15	Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E804-11.	7.1	113
16	Backbone and sidechain 1H, 13C and 15N chemical shift assignments of the hydrophobin DewA from Aspergillus nidulans. Biomolecular NMR Assignments, 2012, 6, 83-86.	0.8	5
17	Recruitment of Class I Hydrophobins to the Air:Water Interface Initiates a Multi-step Process of Functional Amyloid Formation. Journal of Biological Chemistry, 2011, 286, 15955-15963.	3.4	61
18	The Cys3–Cys4 Loop of the Hydrophobin EAS Is Not Required for Rodlet Formation and Surface Activity. Journal of Molecular Biology, 2008, 382, 708-720.	4.2	67