List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8874543/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Salt Stress and Hyperosmotic Stress Regulate the Expression of Different Sets of Genes in Synechocystis sp. PCC 6803. Biochemical and Biophysical Research Communications, 2002, 290, 339-348.	2.1	273
2	Salt Stress Inhibits the Repair of Photodamaged Photosystem II by Suppressing the Transcription and Translation of psbAGenes in Synechocystis Á. Plant Physiology, 2002, 130, 1443-1453.	4.8	246
3	The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO Journal, 2000, 19, 1327-1334.	7.8	238
4	Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Molecular Microbiology, 2001, 40, 235-244.	2.5	238
5	The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Molecular Microbiology, 2002, 46, 905-915.	2.5	185
6	Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9061-9066.	7.1	170
7	Positive Regulation of Sugar Catabolic Pathways in the Cyanobacterium Synechocystis sp. PCC 6803 by the Group 2 Ïf Factor SigE. Journal of Biological Chemistry, 2005, 280, 30653-30659.	3.4	159
8	Identical Hik-Rre Systems Are Involved in Perception and Transduction of Salt Signals and Hyperosmotic Signals but Regulate the Expression of Individual Genes to Different Extents in Synechocystis. Journal of Biological Chemistry, 2005, 280, 21531-21538.	3.4	144
9	Gene Expression Profiling Reflects Physiological Processes in Salt Acclimation of Synechocystis sp. Strain PCC 6803. Plant Physiology, 2004, 136, 3290-3300.	4.8	131
10	Gene-engineered Rigidification of Membrane Lipids Enhances the Cold Inducibility of Gene Expression in Synechocystis. Journal of Biological Chemistry, 2003, 278, 12191-12198.	3.4	127
11	Five Histidine Kinases Perceive Osmotic Stress and Regulate Distinct Sets of Genes in Synechocystis. Journal of Biological Chemistry, 2004, 279, 53078-53086.	3.4	120
12	Identification of Substrain-Specific Mutations by Massively Parallel Whole-Genome Resequencing of Synechocystis sp. PCC 6803. DNA Research, 2012, 19, 67-79.	3.4	119
13	R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in <i>Cyanidioschyzon merolae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12548-12553.	7.1	112
14	Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 803-807.	7.1	103
15	CyanoBase:Âa large-scale update on its 20th anniversary. Nucleic Acids Research, 2017, 45, D551-D554.	14.5	95
16	Acidophilic green algal genome provides insights into adaptation to an acidic environment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8304-E8313.	7.1	93
17	The Histidine Kinase Hik34 Is Involved in Thermotolerance by Regulating the Expression of Heat Shock Genes in Synechocystis. Plant Physiology, 2005, 138, 1409-1421.	4.8	89
18	Histidine kinases play important roles in the perception and signal transduction of hydrogen peroxide in the cyanobacterium. Synechocystis sp. PCC 6803. Plant Journal, 2007, 49, 313-324	5.7	89

#	Article	IF	CITATIONS
19	Chloroplast-mediated regulation of CO ₂ -concentrating mechanism by Ca ²⁺ -binding protein CAS in the green alga <i>Chlamydomonas reinhardtii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12586-12591.	7.1	73
20	Whole-genome resequencing shows numerous genes with nonsynonymous SNPs in the Japanese native cattle Kuchinoshima-Ushi. BMC Genomics, 2011, 12, 103.	2.8	72
21	Structureâ^'Activity Relationship of the Free-Radical-Scavenging Reaction by Vitamin E (α-, β-, γ-,) Tj ETQq1 2007, 111, 652-662.	1 0.784314 rgf 2.6	3T /Overloc 69
22	Lightâ€dependent and asynchronous replication of cyanobacterial multiâ€copy chromosomes. Molecular Microbiology, 2012, 83, 856-865.	2.5	68
23	Genomic characterization of a fructophilic bee symbiont Lactobacillus kunkeei reveals its niche-specific adaptation. Systematic and Applied Microbiology, 2016, 39, 516-526.	2.8	51
24	Intensive DNA Replication and Metabolism during the Lag Phase in Cyanobacteria. PLoS ONE, 2015, 10, e0136800.	2.5	44
25	Genomic Structure of the Cyanobacterium Synechocystis sp. PCC 6803 Strain GT-S. DNA Research, 2011, 18, 393-399.	3.4	42
26	Diversification of DnaA dependency for DNA replication in cyanobacterial evolution. ISME Journal, 2016, 10, 1113-1121.	9.8	39
27	Coordination of Polyploid Chromosome Replication with Cell Size and Growth in a Cyanobacterium. MBio, 2019, 10, .	4.1	37
28	lodide Oxidation by a Novel Multicopper Oxidase from the Alphaproteobacterium Strain Q-1. Applied and Environmental Microbiology, 2012, 78, 3941-3949.	3.1	35
29	Stopped-Flow Kinetic Study of the Aroxyl Radical-Scavenging Action of Catechins and Vitamin C in Ethanol and Micellar Solutions. Journal of Agricultural and Food Chemistry, 2008, 56, 4406-4417.	5.2	34
30	Linear Regression Links Transcriptomic Data and Cellular Raman Spectra. Cell Systems, 2018, 7, 104-117.e4.	6.2	34
31	An RNA helicase, CrhR, regulates the low-temperature-inducible expression of heat-shock genes groES, groEL1 and groEL2 in Synechocystis sp. PCC 6803. Microbiology (United Kingdom), 2010, 156, 442-451.	1.8	32
32	A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae. Frontiers in Plant Science, 2015, 6, 657.	3.6	32
33	Genome Mining of Amino Group Carrier Protein-Mediated Machinery: Discovery and Biosynthetic Characterization of a Natural Product with Unique Hydrazone Unit. ACS Chemical Biology, 2017, 12, 124-131.	3.4	29
34	Sulfur-Containing Carotenoids from A Marine Coral Symbiont Erythrobacter flavus Strain KJ5. Marine Drugs, 2019, 17, 349.	4.6	29
35	Complete genome sequence of cyanobacterium Fischerella sp. NIES-3754, providing thermoresistant optogenetic tools. Journal of Biotechnology, 2016, 220, 45-46.	3.8	27
36	Identification of genes involved in the phosphate metabolism in Cryptococcus neoformans. Fungal Genetics and Biology, 2015, 80, 19-30.	2.1	26

#	Article	IF	CITATIONS
37	External Light Conditions and Internal Cell Cycle Phases Coordinate Accumulation of Chloroplast and Mitochondrial Transcripts in the Red Alga Cyanidioschyzon merolae. DNA Research, 2012, 19, 289-303.	3.4	25
38	Genomic analysis of parallel-evolved cyanobacterium Synechocystis sp. PCC 6803 under acid stress. Photosynthesis Research, 2015, 125, 243-254.	2.9	25
39	A Putative Type III Secretion System Effector Encoded by the <i>MA20_12780</i> Gene in Bradyrhizobium japonicum Is-34 Causes Incompatibility with <i>Rj</i> ₄ Genotype Soybeans. Applied and Environmental Microbiology, 2015, 81, 5812-5819.	3.1	25
40	Microevolution of Virulence-Related Genes in Helicobacter pylori Familial Infection. PLoS ONE, 2015, 10, e0127197.	2.5	23
41	Complete Genome Sequence of 3-Chlorobenzoate-Degrading Bacterium Cupriavidus necator NH9 and Reclassification of the Strains of the Genera Cupriavidus and Ralstonia Based on Phylogenetic and Whole-Genome Sequence Analyses. Frontiers in Microbiology, 2019, 10, 133.	3.5	22
42	Exopolysaccharide production by a unicellular freshwater cyanobacterium Cyanothece sp. isolated from a rice field in Vietnam. Journal of Applied Phycology, 2014, 26, 265-272.	2.8	21
43	DNA replication depends on photosynthetic electron transport in cyanobacteria. FEMS Microbiology Letters, 2013, 344, 138-144.	1.8	19
44	Identification of metabolic engineering targets for improving glycerol assimilation ability of Saccharomyces cerevisiae based on adaptive laboratory evolution and transcriptome analysis. Journal of Bioscience and Bioengineering, 2019, 128, 162-169.	2.2	19
45	Newly Identified Nucleoid-Associated-Like Protein YlxR Regulates Metabolic Gene Expression in Bacillus subtilis. MSphere, 2018, 3, .	2.9	18
46	Capacity for survival in global warming: Adaptation of mesophiles to the temperature upper limit. PLoS ONE, 2019, 14, e0215614.	2.5	18
47	Conserved twoâ€component <scp>H</scp> ik34â€ <scp>R</scp> re1 module directly activates heatâ€stress inducible transcription of major chaperone and other genes in <scp><i>S</i></scp> <i>ynechococcus elongatus</i> <scp>PCC</scp> 7942. Molecular Microbiology, 2017, 104, 260-277.	2.5	17
48	Complete Genome Sequence of Bifidobacterium longum 105-A, a Strain with High Transformation Efficiency. Genome Announcements, 2014, 2, .	0.8	16
49	Identification of the <i>hcb</i> Gene Operon Involved in Catalyzing Aerobic Hexachlorobenzene Dechlorination in Nocardioides sp. Strain PD653. Applied and Environmental Microbiology, 2017, 83, .	3.1	16
50	Genetic Analysis of Collective Motility of Paenibacillus sp. NAIST15-1. PLoS Genetics, 2016, 12, e1006387.	3.5	16
51	Algal Protein Kinase, Triacylglycerol Accumulation Regulator 1, Modulates Cell Viability and Gametogenesis in Carbon/Nitrogen-Imbalanced Conditions. Plant and Cell Physiology, 2019, 60, 916-930.	3.1	15
52	Complete genome sequence of cyanobacterium Nostoc sp. NIES-3756, a potentially useful strain for phytochrome-based bioengineering. Journal of Biotechnology, 2016, 218, 51-52.	3.8	14
53	Fpr1, a primary target of rapamycin, functions as a transcription factor for ribosomal protein genesÂcooperatively with Hmo1 in Saccharomyces cerevisiae. PLoS Genetics, 2020, 16, e1008865.	3.5	14
54	Identification of centromere regions in chromosomes of a unicellular red alga, <i>Cyanidioschyzon merolae</i> . FEBS Letters, 2015, 589, 1219-1224.	2.8	13

#	Article	IF	CITATIONS
55	Characterization of mycosporine-like amino acids in the cyanobacterium <i>Nostoc verrucosum</i> . Journal of General and Applied Microbiology, 2018, 64, 203-211.	0.7	12
56	Identification of the novel <i>hcbB</i> operon catalyzing the dechlorination of pentachlorophenol in the Gram-positive bacterium <i>Nocardioides</i> sp. strain PD653. Journal of Pesticide Sciences, 2018, 43, 124-131.	1.4	12
57	Changes in the transcriptome, ploidy, and optimal light intensity of a cryptomonad upon integration into a kleptoplastic dinoflagellate. ISME Journal, 2020, 14, 2407-2423.	9.8	12
58	Evolutionary Changes in DnaA-Dependent Chromosomal Replication in Cyanobacteria. Frontiers in Microbiology, 2020, 11, 786.	3.5	12
59	Genome sequencing of the NIES Cyanobacteria collection with a focus on the heterocyst-forming clade. DNA Research, 2021, 28, .	3.4	12
60	Identification of the Three Genes Involved in Controlling Production of a Phytotoxin Tropolone in Burkholderia plantarii. Journal of Bacteriology, 2016, 198, 1604-1609.	2.2	11
61	Responses of unicellular predators to cope with the phototoxicity of photosynthetic prey. Nature Communications, 2019, 10, 5606.	12.8	11
62	Physiological properties and genetic analysis related to exopolysaccharide (EPS) production in the fresh-water unicellular cyanobacterium <i>Aphanothece sacrum</i> (Suizenji Nori). Journal of General and Applied Microbiology, 2019, 65, 39-46.	0.7	11
63	Comparative genome analysis of <i>Aspergillus flavus</i> clinically isolated in Japan. DNA Research, 2019, 26, 95-103.	3.4	11
64	Bacillus subtilis Nucleoid-Associated Protein YlxR Is Involved in Bimodal Expression of the Fructoselysine Utilization Operon (frlBONMD-yurJ) Promoter. Frontiers in Microbiology, 2020, 11, 2024.	3.5	11
65	Transcriptional Activation of Glycogen Catabolism and the Oxidative Pentose Phosphate Pathway by NrrA Facilitates Cell Survival Under Nitrogen Starvation in the Cyanobacterium Synechococcus sp. Strain PCC 7002. Plant and Cell Physiology, 2018, 59, 1225-1233.	3.1	10
66	Draft Genome Sequence of the Nitrogen-Fixing and Hormogonia-Inducing Cyanobacterium <i>Nostoc cycadae</i> Strain WK-1, Isolated from the Coralloid Roots of <i>Cycas revoluta</i> . Genome Announcements, 2018, 6, .	0.8	10
67	Interplay and Targetome of the Two Conserved Cyanobacterial sRNAs Yfr1 and Yfr2 in Prochlorococcus MED4. Scientific Reports, 2019, 9, 14331.	3.3	10
68	16S rRNA Gene Amplicon Sequencing of Gut Microbiota in Three Species of Deep-Sea Fish in Suruga Bay, Japan. Microbiology Resource Announcements, 2021, 10, .	0.6	10
69	Evolutionary Adaptation by Repetitive Long-Term Cultivation with Gradual Increase in Temperature for Acquiring Multi-Stress Tolerance and High Ethanol Productivity in Kluyveromyces marxianus DMKU 3-1042. Microorganisms, 2022, 10, 798.	3.6	10
70	Mg-Protoporphyrin IX Signaling inCyanidioschyzon merolae. Plant Signaling and Behavior, 2009, 4, 1190-1192.	2.4	9
71	Draft Genome Sequence of Strain Q-1, an Iodide-Oxidizing Alphaproteobacterium Isolated from Natural Gas Brine Water. Genome Announcements, 2014, 2, .	0.8	9
72	Integration of a <i>Galdieria</i> plasma membrane sugar transporter enables heterotrophic growth of the obligate photoautotrophic red alga <i>Cynanidioschyzon merolae</i> . Plant Direct, 2019, 3, e00134.	1.9	9

#	Article	IF	CITATIONS
73	RNase E-dependent degradation of tnaA mRNA encoding tryptophanase is prerequisite for the induction of acid resistance in Escherichia coli. Scientific Reports, 2020, 10, 7128.	3.3	9
74	Variety of DNA Replication Activity Among Cyanobacteria Correlates with Distinct Respiration Activity in the Dark. Plant and Cell Physiology, 2016, 58, pcw186.	3.1	8
75	Mutations responsible for alcohol tolerance in the mutant of Synechococcus elongatus PCC 7942 (SY1043) obtained by single-cell screening system. Journal of Bioscience and Bioengineering, 2018, 125, 572-577.	2.2	8
76	In vitro and in silico characterisation of Lactobacillus paraplantarum D2-1, a starter culture for soymilk fermentation. International Journal of Food Sciences and Nutrition, 2018, 69, 857-869.	2.8	8
77	Intracellular free flavin and its associated enzymes participate in oxygen and iron metabolism in <i>Amphibacillus xylanus</i> lacking a respiratory chain. FEBS Open Bio, 2018, 8, 947-961.	2.3	8
78	Identification of Transcription Factors and the Regulatory Genes Involved in Triacylglycerol Accumulation in the Unicellular Red Alga Cyanidioschyzon merolae. Plants, 2021, 10, 971.	3.5	8
79	Complete Genome Sequence of Cyanobacterium Leptolyngbya sp. NIES-3755. Genome Announcements, 2016, 4, .	0.8	7
80	Pseudofructophilic Leuconostoc citreum Strain F192-5, Isolated from Satsuma Mandarin Peel. Applied and Environmental Microbiology, 2019, 85, .	3.1	7
81	Free flavins accelerate release of ferrous iron from iron storage proteins by both free flavin-dependent and -independent ferric reductases in <i>Escherichia coli</i> . Journal of General and Applied Microbiology, 2019, 65, 308-315.	0.7	7
82	Reacquisition of light-harvesting genes in a marine cyanobacterium confers a broader solar niche. Current Biology, 2021, 31, 1539-1546.e4.	3.9	7
83	Draft Genome Sequence of Oceanobacillus picturae Heshi-B3, Isolated from Fermented Rice Bran in a Traditional Japanese Seafood Dish. Genome Announcements, 2016, 4, .	0.8	6
84	Draft Genome Sequence of Paenibacillus amylolyticus Heshi-A3, Isolated from Fermented Rice Bran in a Japanese Fermented Seafood Dish. Genome Announcements, 2016, 4, .	0.8	6
85	The CRPâ€family transcriptional regulator DevH regulates expression of heterocystâ€specific genes at the later stage of differentiation in the cyanobacterium <i>Anabaena</i> sp. strain PCC 7120. Molecular Microbiology, 2020, 114, 553-562.	2.5	6
86	ParA-like protein influences the distribution of multi-copy chromosomes in cyanobacterium Synechococcus elongatus PCC 7942. Microbiology (United Kingdom), 2018, 164, 45-56.	1.8	6
87	Comparison between the freeâ€radicalâ€scavenging activities with vitamin E and ubiquinol in biological systems based on their reaction rates: A research account. BioFactors, 2008, 32, 49-58.	5.4	5
88	Acclimation process of the chlorophyll <i>d</i> -bearing cyanobacterium <i>Acaryochloris marina</i> to an orange light environment revealed by transcriptomic analysis and electron microscopic observation. Journal of General and Applied Microbiology, 2020, 66, 106-115	0.7	5
89	Novel (p)ppGpp0suppressor mutations reveal an unexpected link between methionine catabolism and GTP synthesis inBacillus subtilis. Molecular Microbiology, 2020, 113, 1155-1169.	2.5	5
90	Complete sequence and structure of the genome of the harmful algal bloom-forming cyanobacterium Planktothrix agardhii NIES-204T and detailed analysis of secondary metabolite gene clusters. Harmful Algae, 2021, 101, 101942.	4.8	5

#	Article	IF	CITATIONS
91	Draft Genome Sequence of Microbacterium sp. Strain HM58-2, Which Hydrolyzes Acylhydrazides. Genome Announcements, 2016, 4, .	0.8	4
92	Complete Genome Sequence of the Nonheterocystous Cyanobacterium <i>Pseudanabaena</i> sp. ABRG5-3. Genome Announcements, 2018, 6, .	0.8	4
93	Complete Genome Sequence of the Marine Bacterium Erythrobacter flavus Strain KJ5. Microbiology Resource Announcements, 2019, 8, .	0.6	4
94	Genes regulated by branched-chain polyamine in the hyperthermophilic archaeon Thermococcus kodakarensis. Amino Acids, 2020, 52, 287-299.	2.7	4
95	H-NS Family Proteins Drastically Change Their Targets in Response to the Horizontal Transfer of the Catabolic Plasmid pCAR1. Frontiers in Microbiology, 2020, 11, 1099.	3.5	4
96	Transcriptome differences between <i>Cupriavidus necator</i> NH9 grown with 3-chlorobenzoate and that grown with benzoate. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1546-1561.	1.3	4
97	Analysis of spontaneous suppressor mutants from the photomixotrophically grown pmgA-disrupted mutant in the cyanobacterium Synechocystis sp. PCC 6803. Photosynthesis Research, 2015, 126, 465-475.	2.9	3
98	Draft Genome Sequences of Bradyrhizobium elkanii Strains BLY3-8 and BLY6-1, Which Are Incompatible with Rj 3 Genotype Soybean Cultivars. Genome Announcements, 2016, 4, .	0.8	3
99	Physiological and genomic analysis of newly-isolated polysaccharide synthesizing cyanobacterium <i>Chroococcus</i> sp. FPU101 and chemical analysis of the exopolysaccharide. Journal of General and Applied Microbiology, 2021, 67, 207-213.	0.7	3
100	Complete Genome Sequence of a Coastal Cyanobacterium, <i>Synechococcus</i> sp. Strain NIES-970. Genome Announcements, 2017, 5, .	0.8	3
101	Transcriptome profile of carbon catabolite repression in an efficient l-(+)-lactic acid-producing bacterium Enterococcus mundtii QU25 grown in media with combinations of cellobiose, xylose, and glucose. PLoS ONE, 2020, 15, e0242070.	2.5	3
102	Correction for Imamura et al., R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in <i>Cyanidioschyzon merolae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14180-14180.	7.1	2
103	Draft Genome Sequence of Bradyrhizobium japonicum Is-34, Which Is Incompatible with <i>Rj4</i> Genotype Soybeans. Genome Announcements, 2014, 2, .	0.8	2
104	Draft Genome Sequence of Bradyrhizobium japonicum Is-1, Which Is Incompatible with Rj 2 Genotype Soybeans. Genome Announcements, 2015, 3, .	0.8	2
105	Surface Sensing for Paenibacillus sp. NAIST15-1 Flagellar Gene Expression on Solid Medium. Applied and Environmental Microbiology, 2017, 83, .	3.1	2
106	Whole-Genome Sequences of Two Closely Related Bacteria, Actinomyces sp. Strain Chiba101 and Actinomyces denticolens DSM 20671 T. Genome Announcements, 2017, 5, .	0.8	2
107	Draft Genome Sequence of Bacillus licheniformis Heshi-B2, Isolated from Fermented Rice Bran in a Japanese Fermented Seafood Dish. Genome Announcements, 2018, 6, .	0.8	2
108	<i>Actinomyces denticolens</i> as a causative agent of actinomycosis in animals. Journal of Veterinary Medical Science, 2018, 80, 1650-1656.	0.9	2

#	Article	IF	CITATIONS
109	Draft Genome Sequence of Zygosaccharomyces mellis CA-7, Isolated from Honey. Microbiology Resource Announcements, 2019, 8, .	0.6	2
110	The Rubisco small subunits in the green algal genus Chloromonas provide insights into evolutionary loss of the eukaryotic carbon-concentrating organelle, the pyrenoid. Bmc Ecology and Evolution, 2021, 21, 11.	1.6	2
111	Sensors and Signal Transducers of Environmental Stress in Cyanobacteria. , 2009, , 15-31.		1
112	Control of Cell Nuclear DNA Replication by Chloroplast and Mitochondrion. , 2017, , 195-204.		1
113	RNA-seq analysis identified glucose-responsive genes and YqfO as a global regulator in Bacillus subtilis. BMC Research Notes, 2021, 14, 450.	1.4	1
114	Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in Synechocystis Journal of Biological Chemistry, 2012, 287, 2269.	3.4	0
115	Five histidine kinases perceive osmotic stress and regulate distinct sets of genes in Synechocystis Journal of Biological Chemistry, 2012, 287, 2269.	3.4	0
116	Non-Destructive Prediction of Transcriptomes from Single-Cell Raman Microscopy. Biophysical Journal, 2018, 114, 390a.	0.5	0
117	Complete Genome Sequence of Enterococcus faecium QU50, a Thermophilic Lactic Acid Bacterium Capable of Metabolizing Xylose. Microbiology Resource Announcements, 2019, 8, .	0.6	0
118	Ubr1p-Cup9p-Ptr2p pathway involves in the sensitivity to readthrough compounds negamycin derivatives in budding yeast. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1889-1892.	1.3	0
119	Characteristics of physiology of and genomic mutations in aggregation-enhanced mutants of Methanothermobacter sp. CaT2. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1047-1055.	1.3	0
120	The 100%-Complete Nuclear and Organellar Genome Sequences of the Ultrasmall Red Algal Species Cyanidioschyzon merolae 10D. , 2017, , 61-72.		0
121	Draft Genome Sequence of Lactiplantibacillus plantarum NMZ-1139, Isolated from Whisky Mash. Microbiology Resource Announcements, 2021, 10, e0100821.	0.6	0