Dejian Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8874508/publications.pdf

Version: 2024-02-01

	471509	434195
1,038	17	31
citations	h-index	g-index
42	42	1491
docs citations	times ranked	citing authors
	citations 42	1,038 17 citations h-index 42 42

#	Article	IF	CITATIONS
1	Mechanically reinforced injectable bioactive nanocomposite hydrogels for in-situ bone regeneration. Chemical Engineering Journal, 2022, 433, 132799.	12.7	52
2	Hydrothermal Deposition of PCNâ€224 on 3Dâ€Printed Porous βâ€Ca ₂ SiO ₄ Scaffolds for Bone Regeneration. Advanced Engineering Materials, 2022, 24, .	3.5	7
3	Traditional Chinese Medicine Compound-Loaded Materials in Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2022, 10, 851561.	4.1	6
4	Coupling metal organic frameworks with molybdenum disulfide nanoflakes for targeted cancer theranostics. Biomaterials Science, 2021, 9, 3306-3318.	5.4	12
5	Insights into homeobox B9: a propeller for metastasis in dormant prostate cancer progenitor cells. British Journal of Cancer, 2021, 125, 1003-1015.	6.4	6
6	An injectable double cross-linked hydrogel adhesive inspired by synergistic effects of mussel foot proteins for biomedical application. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111782.	5.0	10
7	Bioprinting a cellâ€laden matrix for bone regeneration: A focused review. Journal of Applied Polymer Science, 2021, 138, 49888.	2.6	14
8	Polydopamine Coating-Mediated Immobilization of BMP-2 on Polyethylene Terephthalate-Based Artificial Ligaments for Enhanced Bioactivity. Frontiers in Bioengineering and Biotechnology, 2021, 9, 749221.	4.1	10
9	High Expression MicroRNA-206 Inhibits the Growth of Tumor Cells in Human Malignant Fibrous Histiocytoma. Frontiers in Cell and Developmental Biology, 2021, 9, 751833.	3.7	1
10	A Tumor Microenvironmentâ€Responsive Biodegradable Mesoporous Nanosystem for Antiâ€Inflammation and Cancer Theranostics. Advanced Healthcare Materials, 2020, 9, e1901307.	7.6	33
11	Surface Functionalization of Three Dimensional-Printed Polycaprolactone-Bioactive Glass Scaffolds by Grafting GelMA Under UV Irradiation. Frontiers in Materials, 2020, 7, .	2.4	14
12	Cytisine attenuates bone loss of ovariectomy mouse by preventing RANKLâ€induced osteoclastogenesis. Journal of Cellular and Molecular Medicine, 2020, 24, 10112-10127.	3.6	13
13	Schisandrin A restrains osteoclastogenesis by inhibiting reactive oxygen species and activating Nrf2 signalling. Cell Proliferation, 2020, 53, e12882.	5.3	46
14	Decoration of electrical conductive polyurethaneâ€polyaniline/polyvinyl alcohol matrixes with musselâ€inspired polydopamine for bone tissue engineering. Biotechnology Progress, 2020, 36, e3043.	2.6	24
15	Cancer Theranostics: A Tumor Microenvironmentâ€Responsive Biodegradable Mesoporous Nanosystem for Antiâ€Inflammation and Cancer Theranostics (Adv. Healthcare Mater. 2/2020). Advanced Healthcare Materials, 2020, 9, 2070007.	7.6	1
16	3D printing of acellular scaffolds for bone defect regeneration: A review. Materials Today Communications, 2020, 22, 100979.	1.9	46
17	Biodegradable theranostic nanoplatforms of albumin-biomineralized nanocomposites modified hollow mesoporous organosilica for photoacoustic imaging guided tumor synergistic therapy. Chemical Engineering Journal, 2020, 388, 124253.	12.7	37
18	Finite element analysis of dual small plate fixation and single plate fixation for treatment of midshaft clavicle fractures. Journal of Orthopaedic Surgery and Research, 2020, 15, 148.	2.3	12

#	Article	IF	CITATIONS
19	Juglanin Inhibits Osteoclastogenesis in Ovariectomized Mice via the Suppression of NF-κB Signaling Pathways. Frontiers in Pharmacology, 2020, 11, 596230.	3.5	5
20	Oxyresveratrol induces apoptosis and inhibits cell viability via inhibition of the STAT3 signaling pathway in Saosâ€'2 cells. Molecular Medicine Reports, 2020, 22, 5191-5198.	2.4	7
21	Bilayered Scaffold Prepared from a Kartogenin-Loaded Hydrogel and BMP-2-Derived Peptide-Loaded Porous Nanofibrous Scaffold for Osteochondral Defect Repair. ACS Biomaterials Science and Engineering, 2019, 5, 4564-4573.	5.2	22
22	Nanofibrous vascular scaffold prepared from miscible polymer blend with heparin/stromal cell-derived factor-1 alpha for enhancing anticoagulation and endothelialization. Colloids and Surfaces B: Biointerfaces, 2019, 181, 963-972.	5.0	25
23	Synergistic Chemo-Photothermal Suppression of Cancer by Melanin Decorated MoO _{<i>x</i>} Nanosheets. ACS Applied Bio Materials, 2019, 2, 4356-4366.	4.6	16
24	Albumin-bioinspired iridium oxide nanoplatform with high photothermal conversion efficiency for synergistic chemo-photothermal of osteosarcoma. Drug Delivery, 2019, 26, 918-927.	5.7	24
25	Three-dimensional printing of CaTiO3 incorporated porous \hat{l}^2 -Ca2SiO4 composite scaffolds for bone regeneration. Applied Materials Today, 2019, 16, 132-140.	4.3	20
26	Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydrate Polymers, 2019, 221, 146-156.	10.2	113
27	3D printed PCL/SrHA scaffold for enhanced bone regeneration. Chemical Engineering Journal, 2019, 362, 269-279.	12.7	169
28	Tetrandrine Prevents Bone Loss in Ovariectomized Mice by Inhibiting RANKL-Induced Osteoclastogenesis. Frontiers in Pharmacology, 2019, 10, 1530.	3.5	30
29	Multifunctional A7R Peptide-Modified Hollow Mesoporous Silica@Ag ₂ S Nanotheranostics for Photoacoustic/Near-Infrared Fluorescence Imaging-Guided Tumor-Targeted Chemo-Photothermal Therapy. Journal of Biomedical Nanotechnology, 2019, 15, 1415-1431.	1.1	12
30	Self-Assembled Hydroxyapatite-Graphene Scaffold for Photothermal Cancer Therapy and Bone Regeneration. Journal of Biomedical Nanotechnology, 2018, 14, 2003-2017.	1.1	68
31	One-Pot Synthesis of Silver Nanoparticle Incorporated Mesoporous Silica Granules for Hemorrhage Control and Antibacterial Treatment. ACS Biomaterials Science and Engineering, 2018, 4, 3588-3599.	5.2	29
32	Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1686-1700.	3.5	12
33	Fabrication of multifunctional triple-responsive platform based on CuS-capped periodic mesoporous organosilica nanoparticles for chemo-photothermal therapy. International Journal of Nanomedicine, 2018, Volume 13, 3661-3677.	6.7	23
34	Enhance the Bioactivity and Osseointegration of the Polyethyleneâ€Terephthalateâ€Based Artificial Ligament via Poly(Dopamine) Coating with Mesoporous Bioactive Glass. Advanced Engineering Materials, 2017, 19, 1600708.	3.5	17
35	Fabrication of curcumin-loaded mesoporous silica incorporated polyvinyl pyrrolidone nanofibers for rapid hemostasis and antibacterial treatment. RSC Advances, 2017, 7, 7973-7982.	3.6	62
36	The Bare Area of the Proximal Ulna: An Anatomic StudyÂWith Relevance to Chevron Osteotomy. Journal of Hand Surgery, 2017, 42, 471.e1-471.e6.	1.6	10

Dejian Li

#	Article	IF	CITATION
37	Formation of spherical cancer stem-like cell colonies with resistance to chemotherapy drugs in the human malignant fibrous histiocytoma NMFH-1 cell line. Oncology Letters, 2015, 10, 3323-3331.	1.8	17
38	The ALDH1+ subpopulation of the human NMFH-1 cell line exhibits cancer stem-like characteristics. Oncology Reports, 2015, 33, 2291-2298.	2.6	12