Shinsuke Ishihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/887422/publications.pdf

Version: 2024-02-01

		218677	223800
51	2,200	26	46
papers	citations	h-index	g-index
57	57	57	3173
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. Physical Chemistry Chemical Physics, 2014, 16, 9713.	2.8	319
2	MOF-derived Nanoporous Carbon as Intracellular Drug Delivery Carriers. Chemistry Letters, 2014, 43, 717-719.	1.3	165
3	Materials nanoarchitectonics for environmental remediation and sensing. Journal of Materials Chemistry, 2012, 22, 2369-2377.	6.7	156
4	NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers. Nature Communications, 2013, 4, 2188.	12.8	103
5	Chiral Sensing by Nonchiral Tetrapyrroles. Accounts of Chemical Research, 2015, 48, 521-529.	15.6	93
6	Hunting for Organic Molecules with Artificial Intelligence: Molecules Optimized for Desired Excitation Energies. ACS Central Science, 2018, 4, 1126-1133.	11.3	91
7	Bridging the Difference to the Billionth-of-a-Meter Length Scale: How to Operate Nanoscopic Machines and Nanomaterials by Using Macroscopic Actions. Chemistry of Materials, 2014, 26, 519-532.	6.7	81
8	Dynamic Breathing of CO ₂ by Hydrotalcite. Journal of the American Chemical Society, 2013, 135, 18040-18043.	13.7	77
9	Nuclear Magnetic Resonance Signaling of Molecular Chiral Information Using an Achiral Reagent. Journal of the American Chemical Society, 2009, 131, 9494-9495.	13.7	74
10	Rapid Exchange between Atmospheric CO ₂ and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18352-18359.	8.0	68
11	Ultratrace Detection of Toxic Chemicals: Triggered Disassembly of Supramolecular Nanotube Wrappers. Journal of the American Chemical Society, 2016, 138, 8221-8227.	13.7	64
12	Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems. Science and Technology of Advanced Materials, 2012, 13, 053001.	6.1	63
13	Supercooling of functional alkyl-ï€ molecular liquids. Chemical Science, 2018, 9, 6774-6778.	7.4	56
14	Naked-Eye Discrimination of Methanol from Ethanol Using Composite Film of Oxoporphyrinogen and Layered Double Hydroxide. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5927-5930.	8.0	50
15	Colorimetric detection of trace water in tetrahydrofuran using N,N′-substituted oxoporphyrinogens. Chemical Communications, 2012, 48, 3933.	4.1	45
16	Chiral Guest Binding as a Probe of Macrocycle Dynamics and Tautomerism in a Conjugated Tetrapyrrole. Journal of the American Chemical Society, 2014, 136, 2112-2118.	13.7	41
17	Metallic versus Semiconducting SWCNT Chemiresistors: A Case for Separated SWCNTs Wrapped by a Metallosupramolecular Polymer. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38062-38067.	8.0	39
18	Why Do Carbonate Anions Have Extremely High Stability in the Interlayer Space of Layered Double Hydroxides? Case Study of Layered Double Hydroxide Consisting of Mg and Al (Mg/Al = 2). Inorganic Chemistry, 2019, 58, 10928-10935.	4.0	38

#	Article	IF	Citations
19	Amperometric Detection of Sub-ppm Formaldehyde Using Single-Walled Carbon Nanotubes and Hydroxylamines: A Referenced Chemiresistive System. ACS Sensors, 2017, 2, 1405-1409.	7.8	37
20	Reversible Photoredox Switching of Porphyrin-Bridged Bis-2,6-di- <i>tert</i> -butylphenols. Journal of the American Chemical Society, 2011, 133, 16119-16126.	13.7	35
21	Rational Design and Synthesis of Cyanoâ€Bridged Coordination Polymers with PreciseÂ-Control of Particle Size from 20 to 500 nm. European Journal of Inorganic Chemistry, 2013, 2013, 3141-3145.	2.0	33
22	Chirality Sensing by Nonchiral Porphines. Chemistry - A European Journal, 2011, 17, 3558-3561.	3.3	32
23	Atomic architectonics, nanoarchitectonics and microarchitectonics for strategies to make junk materials work as precious catalysts. CrystEngComm, 2016, 18, 6770-6778.	2.6	32
24	Soft chromophore featured liquid porphyrins and their utilization toward liquid electret applications. Nature Communications, 2019, 10, 4210.	12.8	32
25	NbPt ₃ Intermetallic Nanoparticles: Highly Stable and COâ€Tolerant Electrocatalyst for Fuel Oxidation. ChemElectroChem, 2014, 1, 728-732.	3.4	31
26	The effect of regioisomerism on the photophysical properties of alkylated-naphthalene liquids. Physical Chemistry Chemical Physics, 2018, 20, 2970-2975.	2.8	28
27	Thermal Conversion of Hollow Prussian Blue Nanoparticles into Nanoporous Iron Oxides with Crystallized Hematite Phase. European Journal of Inorganic Chemistry, 2014, 2014, 1137-1141.	2.0	27
28	Novel block copolymer templates for tuning mesopore connectivity in cage-type mesoporous silica films. Journal of Materials Chemistry, 2012, 22, 20008.	6.7	26
29	Colorimetric visualization of acid–base equilibria in non-polar solvent. Chemical Communications, 2013, 49, 6870.	4.1	26
30	Discrimination of Methanol from Ethanol in Gasoline Using a Membrane-type Surface Stress Sensor Coated with Copper(I) Complex. Bulletin of the Chemical Society of Japan, 2021, 94, 648-654.	3.2	24
31	Hydrogen-bond-driven â€~homogeneous intercalation' for rapid, reversible, and ultra-precise actuation of layered clay nanosheets. Chemical Communications, 2013, 49, 3631.	4.1	23
32	Luminescence tuning with excellent colour homogeneity and steadiness using fluorescent molecular liquids. Journal of Materials Chemistry C, 2019, 7, 2577-2582.	5.5	22
33	Pushing property limits in materials discovery <i>via</i> boundless objective-free exploration. Chemical Science, 2020, 11, 5959-5968.	7.4	20
34	Cascade Reaction-Based Chemiresistive Array for Ethylene Sensing. ACS Sensors, 2020, 5, 1405-1410.	7.8	17
35	Synthesis of mesoporous antimony-doped tin oxide (ATO) thin films and investigation of their electrical conductivity. CrystEngComm, 2013, 15, 4404.	2.6	16
36	Multinuclear solid-state NMR spectroscopy of a paramagnetic layered double hydroxide. RSC Advances, 2013, 3, 19857.	3.6	15

#	Article	IF	CITATIONS
37	Structural Modulation of Chromic Response: Effects of Bindingâ€Site Blocking in a Conjugated Calix[4]pyrrole Chromophore. ChemistryOpen, 2018, 7, 323-335.	1.9	14
38	De novo creation of a naked eye–detectable fluorescent molecule based on quantum chemical computation and machine learning. Science Advances, 2022, 8, eabj3906.	10.3	14
39	Dynamic Processes in Prochiral Solvating Agents (pro-CSAs) Studied by NMR Spectroscopy. Symmetry, 2014, 6, 345-367.	2.2	12
40	Fluorescent mesomorphic pyrazinacenes. Journal of Materials Chemistry C, 2016, 4, 11514-11523.	5.5	11
41	NMR Spectroscopic Determination of Enantiomeric Excess Using Small Prochiral Molecules. Journal of Physical Chemistry B, 2018, 122, 5114-5120.	2.6	10
42	Controlled release of H2S and NO gases through CO2-stimulated anion exchange. Nature Communications, 2020, 11, 453.	12.8	8
43	Conformation induced discrimination between picric acid and nitro derivatives/anions with a Cu-pyrene array: the first decision making photonic device. RSC Advances, 2013, 3, 21365.	3.6	7
44	Data integration for accelerated materials design via preference learning. New Journal of Physics, 2020, 22, 055001.	2.9	6
45	Increasing the complexity of oxoporphyrinogen colorimetric sensing chromophores: N-alkylation and \hat{l}^2 -substitution. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1184-1194.	0.8	4
46	<i>meso</i> -Tetraphenylporphine as a prochiral solvating agent (pro-CSA): A physicochemical study. Journal of Porphyrins and Phthalocyanines, 2020, 24, 320-329.	0.8	4
47	Enantiomeric Excess Dependent Splitting of NMR Signal through Dynamic Chiral Inversion and Coligand Exchange in a Coordination Complex. Journal of Physical Chemistry Letters, 2020, 11, 8164-8169.	4.6	4
48	Estimation of Enantiomeric Excess Based on Rapid Host–Guest Exchange. Chemosensors, 2021, 9, 259.	3.6	3
49	Colorimetric Sensor for Facile Identification of Methanol-Containing Gasoline., 2017,,.		1
50	Disposable Nitric Oxide Generator Based on a Structurally Deformed Nitrite-Type Layered Double Hydroxide. Inorganic Chemistry, 2021, 60, 16008-16015.	4.0	1
51	Analyte Interactions with Oxoporphyrinogen Derivatives: Computational Aspects. Current Organic Chemistry, 2022, 26, 580-595.	1.6	1