Daniela De Biase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8874073/publications.pdf

Version: 2024-02-01

65 papers 2,977 citations

28 h-index 53 g-index

68 all docs 68
docs citations

68 times ranked 2909 citing authors

#	Article	IF	CITATIONS
1	Impact of the Gastrointestinal Tract Microbiota on Cardiovascular Health and Pathophysiology. Journal of Cardiovascular Pharmacology, 2022, Publish Ahead of Print, .	0.8	1
2	Management of Chronic Stable Angina: Modern Microbiomedical Research Provides Insights Into Traditional Chinese Medicine Treatments. Journal of Cardiovascular Pharmacology, 2021, 77, 421-423.	0.8	0
3	Nanotechnology inspired biosensor with photo-responsive liquid crystals. , 2021, , .		O
4	Stress survival islets contribute to clonal and serotype-specific differences in L. monocytogenes. IOP Conference Series: Earth and Environmental Science, 2021, 854, 012050.	0.2	0
5	Landscape of Stress Response and Virulence Genes Among Listeria monocytogenes Strains. Frontiers in Microbiology, 2021, 12, 738470.	1.5	18
6	Understanding How Microorganisms Respond to Acid pH Is Central to Their Control and Successful Exploitation. Frontiers in Microbiology, 2020, 11, 556140.	1.5	90
7	Editorial: Microbial Stress: From Sensing to Intracellular and Population Responses. Frontiers in Microbiology, 2020, 11, 1667.	1.5	1
8	Enzymatic kinetic resolution of desmethylphosphinothricin indicates that phosphinic group is a bioisostere of carboxyl group. Communications Chemistry, 2020, 3, .	2.0	5
9	Lethality of <i>Brucella microti</i> in a murine model of infection depends on the <i>wbkE</i> gene involved in O-polysaccharide synthesis. Virulence, 2019, 10, 868-878.	1.8	10
10	The Glutaminase-Dependent Acid Resistance System: Qualitative and Quantitative Assays and Analysis of Its Distribution in Enteric Bacteria. Frontiers in Microbiology, 2018, 9, 2869.	1.5	35
11	Effect of Temperature, pH and Plasmids on In Vitro Biofilm Formation in Escherichia coli. Acta Naturae, 2018, 10, 129-132.	1.7	17
12	On the effect of alkaline pH and cofactor availability in the conformational and oligomeric state of ci>Escherichia coliglutamate decarboxylase. Protein Engineering, Design and Selection, 2017, 30, 235-244.	1.0	3
13	The Glutaminase-Dependent System Confers Extreme Acid Resistance to New Species and Atypical Strains of Brucella. Frontiers in Microbiology, 2017, 8, 2236.	1.5	17
14	Glutamate decarboxylase in bacteria , 2017, , 15-28.		1
15	The yhiM gene codes for an inner membrane protein involved in GABA export in Escherichia coli . AIMS Microbiology, 2017, 3, 71-87.	1.0	12
16	Convenient syntheses of phosphinic analogues of \hat{l}^3 -aminobutyric- and glutamic acids. Russian Journal of Bioorganic Chemistry, 2016, 42, 672-676.	0.3	2
17	Bicyclic \hat{I}^3 -amino acids as inhibitors of \hat{I}^3 -aminobutyrate aminotransferase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 295-301.	2.5	14
18	The Escherichia coli Acid Stress Response and Its Significance for Pathogenesis. Advances in Applied Microbiology, 2015, 92, 49-88.	1.3	65

#	Article	IF	CITATIONS
19	Glutamate Decarboxylase-Dependent Acid Resistance in Brucella spp.: Distribution and Contribution to Fitness under Extremely Acidic Conditions. Applied and Environmental Microbiology, 2015, 81, 578-586.	1.4	43
20	Biochemical and spectroscopic properties of <i>Brucella microti ⟨i⟩ glutamate decarboxylase, a key component of the glutamateâ€dependent acid resistance system. FEBS Open Bio, 2015, 5, 209-218.</i>	1.0	18
21	Cofactor-dependent conformational heterogeneity of GAD65 and its role in autoimmunity and neurotransmitter homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2524-E2529.	3.3	34
22	Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiology Reviews, 2014, 38, 1091-1125.	3.9	375
23	The Elusive but Pathogenic Peptidoglycan of Chlamydiae. European Journal of Inflammation, 2013, 11, 257-260.	0.2	5
24	The Glutamic Acid Decarboxylase System of the New Species Brucella microti Contributes to Its Acid Resistance and to Oral Infection of Mice. Journal of Infectious Diseases, 2012, 206, 1424-1432.	1.9	38
25	Intracellular NADPH Levels Affect the Oligomeric State of the Glucose 6-Phosphate Dehydrogenase. Eukaryotic Cell, 2012, 11, 1503-1511.	3.4	21
26	Glutamate decarboxylaseâ€dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the <scp><i>gadBC</i></scp> operon. Molecular Microbiology, 2012, 86, 770-786.	1.2	149
27	Endangered North Atlantic right whales (Eubalaena glacialis) experience repeated, concurrent exposure to multiple environmental neurotoxins produced by marine algae. Environmental Research,	3.7	37
	2012, 112, 67-76.		
28	C-C Bond Formation and Decarboxylation., 2012,, 263-295.		1
28		1.0	7
	C-C Bond Formation and Decarboxylation. , 2012, , 263-295. Activators of the Glutamate-Dependent Acid Resistance System Alleviate Deleterious Effects of YidC	1.0	
29	C-C Bond Formation and Decarboxylation., 2012,, 263-295. Activators of the Glutamate-Dependent Acid Resistance System Alleviate Deleterious Effects of YidC Depletion in (i) Escherichia coli (i). Journal of Bacteriology, 2011, 193, 1308-1316. Mutation of His465 Alters the pH-dependent Spectroscopic Properties of Escherichia coli Glutamate Decarboxylase and Broadens the Range of Its Activity toward More Alkaline pH. Journal of Biological		7
30	C-C Bond Formation and Decarboxylation., 2012,, 263-295. Activators of the Glutamate-Dependent Acid Resistance System Alleviate Deleterious Effects of YidC Depletion in (i>Escherichia coli / i>. Journal of Bacteriology, 2011, 193, 1308-1316. Mutation of His465 Alters the pH-dependent Spectroscopic Properties of Escherichia coli Glutamate Decarboxylase and Broadens the Range of Its Activity toward More Alkaline pH. Journal of Biological Chemistry, 2009, 284, 31587-31596. The application of glutamic acid î±-decarboxylase for the valorization of glutamic acid. Green	1.6	7 56
29 30 31	C-C Bond Formation and Decarboxylation. , 2012, , 263-295. Activators of the Glutamate-Dependent Acid Resistance System Alleviate Deleterious Effects of YidC Depletion in < i>Escherichia coli < / i> . Journal of Bacteriology, 2011, 193, 1308-1316. Mutation of His465 Alters the pH-dependent Spectroscopic Properties of Escherichia coli Glutamate Decarboxylase and Broadens the Range of Its Activity toward More Alkaline pH. Journal of Biological Chemistry, 2009, 284, 31587-31596. The application of glutamic acid α-decarboxylase for the valorization of glutamic acid. Green Chemistry, 2009, 11, 1562. GadX/GadWâ€dependent regulation of the < i> Escherichia coli < / i> acid fitness island: transcriptional control at the < i> gadY–gadW bivergent promoters and identification of four novel 42â€fbp	1.6 4.6	7 56 91
29 30 31 32	C-C Bond Formation and Decarboxylation. , 2012, , 263-295. Activators of the Glutamate-Dependent Acid Resistance System Alleviate Deleterious Effects of YidC Depletion in <i>Escherichia coli </i> Journal of Bacteriology, 2011, 193, 1308-1316. Mutation of His465 Alters the pH-dependent Spectroscopic Properties of Escherichia coli Glutamate Decarboxylase and Broadens the Range of Its Activity toward More Alkaline pH. Journal of Biological Chemistry, 2009, 284, 31587-31596. The application of glutamic acid α-decarboxylase for the valorization of glutamic acid. Green Chemistry, 2009, 11, 1562. GadX/GadWâ€dependent regulation of the ⟨i⟩Escherichia coli⟨/i⟩ acid fitness island: transcriptional control at the ⟨i⟩gadY–gadW⟨/i⟩ divergent promoters and identification of four novel 42â€∫bp GadX/GadWâ€specific binding sites. Molecular Microbiology, 2008, 70, 965-982. Transcription of the Listeria monocytogenes fri gene is growth-phase dependent and is repressed	1.6 4.6 1.2	7 56 91 111
29 30 31 32	C-C Bond Formation and Decarboxylation., 2012, , 263-295. Activators of the Glutamate-Dependent Acid Resistance System Alleviate Deleterious Effects of YidC Depletion in ⟨i⟩Escherichia coli⟨ i⟩. Journal of Bacteriology, 2011, 193, 1308-1316. Mutation of His465 Alters the pH-dependent Spectroscopic Properties of Escherichia coli Glutamate Decarboxylase and Broadens the Range of Its Activity toward More Alkaline pH. Journal of Biological Chemistry, 2009, 284, 31587-31596. The application of glutamic acid α-decarboxylase for the valorization of glutamic acid. Green Chemistry, 2009, 11, 1562. GadX/GadWâ€dependent regulation of the ⟨i⟩ Escherichia coli⟨ i⟩ acid fitness island: transcriptional control at the ⟨i⟩ gadY†"gadW⟨ i⟩ divergent promoters and identification of four novel 42â€fbp GadX/GadWâ€specific binding sites. Molecular Microbiology, 2008, 70, 965-982. Transcription of the Listeria monocytogenes fri gene is growth-phase dependent and is repressed directly by Fur, the ferric uptake regulator. Gene, 2008, 410, 113-121. Escherichia coli acid resistance: pH-sensing, activation by chloride and autoinhibition in GadB. EMBO	1.6 4.6 1.2	7 56 91 111 35

#	Article	IF	Citations
37	Antagonistic Role of H-NS and GadX in the Regulation of the Glutamate Decarboxylase-dependent Acid Resistance System in Escherichia coli. Journal of Biological Chemistry, 2005, 280, 21498-21505.	1.6	50
38	Structures of γ-Aminobutyric Acid (GABA) Aminotransferase, a Pyridoxal 5′-Phosphate, and [2Fe-2S] Cluster-containing Enzyme, Complexed with γ-Ethynyl-GABA and with the Antiepilepsy Drug Vigabatrin. Journal of Biological Chemistry, 2004, 279, 363-373.	1.6	129
39	Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO Journal, 2003, 22, 4027-4037.	3.5	210
40	Stability and oligomerization of recombinant GadX, a transcriptional activator of the Escherichia coli glutamate decarboxylase system. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1647, 376-380.	1.1	21
41	The critical structural role of a highly conserved histidine residue in group II amino acid decarboxylases. FEBS Letters, 2003, 554, 41-44.	1.3	9
42	Functional Characterization and Regulation of gadX , a Gene Encoding an AraC/XylS-Like Transcriptional Activator of the Escherichia coli Glutamic Acid Decarboxylase System. Journal of Bacteriology, 2002, 184, 2603-2613.	1.0	139
43	The expression of the dodecameric ferritin in Listeria spp. is induced by iron limitation and stationary growth phase. Gene, 2002, 296, 121-128.	1.0	46
44	Contribution of Lys276 to the conformational flexibility of the active site of glutamate decarboxylase from Escherichia coli. FEBS Journal, 2002, 269, 4913-4920.	0.2	20
45	Allosteric Communication of Tryptophan Synthase. Journal of Biological Chemistry, 2001, 276, 17747-17753.	1.6	28
46	Environmental Stimuli and Regulatory Factors Affecting the Expression of the Glutamic Acid Decarboxylase System in Escherichia coli., 2000,, 41-46.		1
47	The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Molecular Microbiology, 1999, 32, 1198-1211.	1.2	261
48	Expression and activity of cyclic and linear analogues of esculentin-1, an anti-microbial peptide from amphibian skin. FEBS Journal, 1999, 263, 921-927.	0.2	54
49	Crystal Structure of GABA-Aminotransferase, a Target for Antiepileptic Drug Therapy. Biochemistry, 1999, 38, 8628-8634.	1.2	88
50	Crystallization and preliminary X-ray analysis of the \hat{I}^2 -isoform of glutamate decarboxylase from Escherichia coli. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 1020-1022.	2.5	4
51	Purification and Characterization of Recombinant Rabbit Cytosolic Serine Hydroxymethyltransferase. Protein Expression and Purification, 1998, 13, 177-183.	0.6	26
52	The Roles of His-167 and His-275 in the Reaction Catalyzed by Glutamate Decarboxylase from Escherichia coli. Journal of Biological Chemistry, 1998, 273, 1939-1945.	1.6	17
53	Isolation, Overexpression, and Biochemical Characterization of the Two Isoforms of Glutamic Acid Decarboxylase fromEscherichia coli. Protein Expression and Purification, 1996, 8, 430-438.	0.6	99
54	Half-of-the-sites Reactivity of Bovine Serum Amine Oxidase. Reactivity and Chemical Identity of the Second Site. FEBS Journal, 1996, 237, 93-99.	0.2	28

#	Article	IF	CITATIONS
55	Primary Structure and Tissue Distribution of Human 4-Aminobutyrate Aminotransferase. FEBS Journal, 1995, 227, 476-480.	0.2	25
56	Active site model for $\hat{I}^3 \hat{a} \in \mathbf{a}$ minobutyrate aminotransferase explains substrate specificity and inhibitor reactivities. Protein Science, 1995, 4, 2366-2374.	3.1	29
57	Protein structure of pig liver 4-aminobutyrate aminotransferase and comparison with a cDNA-deduced sequence. FEBS Journal, 1992, 208, 351-357.	0.2	19
58	Mechanism of inactivation and identification of sites of modification of ornithine aminotransferase by 4-aminohex-5-ynoate. Biochemistry, 1991, 30, 2239-2246.	1.2	9
59	A chromophore in glutamate decarâ ylase has been wrongly identified as PQQ. FEBS Letters, 1991, 278, 120-122.	1.3	10
60	Automated amino acid analysis using precolumn derivatization with dansylchloride reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 1990, 504, 129-138.	1.8	47
61	Crystallization and preliminary X-ray analysis of \hat{l}^3 -aminobutyric acid transaminase. Journal of Molecular Biology, 1990, 214, 821-823.	2.0	10
62	Six novel tachykinin- and bombesin-related peptides from the skin of the Australian frog Pseudophryne g \tilde{A}^{1} /4ntheri. Peptides, 1990, 11, 299-304.	1.2	40
63	Purification and characterization of bioactive peptides from skin extracts of Rana esculenta. Biochimica Et Biophysica Acta - General Subjects, 1990, 1033, 318-323.	1.1	59
64	Stoichiometry and stability of the adduct formed between human 4-aminobutyrate aminotransferase and 4-aminohex-5-enoate: sequence of a labelled peptide. Biochimie, 1989, 71, 491-495.	1.3	10
65	Editorial: Microbial Stress: From Model Organisms to Applications in Food, Microbiotechnology and Medicine. Frontiers in Microbiology, 0, 13, .	1.5	O