
Virginia M-Y Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8873922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	α-Synuclein in Lewy bodies. Nature, 1997, 388, 839-840.	13.7	7,181
2	Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science, 2006, 314, 130-133.	6.0	5,422
3	Diagnosis and management of dementia with Lewy bodies. Neurology, 2017, 89, 88-100.	1.5	2,805
4	Neurodegenerative Tauopathies. Annual Review of Neuroscience, 2001, 24, 1121-1159.	5.0	2,416
5	Pathological α-Synuclein Transmission Initiates Parkinson-like Neurodegeneration in Nontransgenic Mice. Science, 2012, 338, 949-953.	6.0	2,024
6	Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature Reviews Neuroscience, 2007, 8, 663-672.	4.9	1,866
7	Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Annals of Neurology, 2009, 65, 403-413.	2.8	1,803
8	Synapse Loss and Microglial Activation Precede Tangles in a P301S Tauopathy Mouse Model. Neuron, 2007, 53, 337-351.	3.8	1,696
9	A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science, 1991, 251, 675-678.	6.0	1,441
10	Exogenous α-Synuclein Fibrils Induce Lewy Body Pathology Leading to Synaptic Dysfunction and Neuron Death. Neuron, 2011, 72, 57-71.	3.8	1,249
11	Neuronal α-Synucleinopathy with Severe Movement Disorder in Mice Expressing A53T Human α-Synuclein. Neuron, 2002, 34, 521-533.	3.8	1,094
12	Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. Journal of Experimental Medicine, 2012, 209, 975-986.	4.2	910
13	A Hydrophobic Stretch of 12 Amino Acid Residues in the Middle of α-Synuclein Is Essential for Filament Assembly. Journal of Biological Chemistry, 2001, 276, 2380-2386.	1.6	865
14	Stages of pTDPâ€43 pathology in amyotrophic lateral sclerosis. Annals of Neurology, 2013, 74, 20-38.	2.8	820
15	Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nature Structural and Molecular Biology, 2016, 23, 409-415.	3.6	802
16	Synucleins Are Developmentally Expressed, and $\hat{l}\pm$ -Synuclein Regulates the Size of the Presynaptic Vesicular Pool in Primary Hippocampal Neurons. Journal of Neuroscience, 2000, 20, 3214-3220.	1.7	795
17	Initiation and Synergistic Fibrillization of Tau and Alpha-Synuclein. Science, 2003, 300, 636-640.	6.0	791
18	Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20051-20056.	3.3	783

#	Article	IF	CITATIONS
19	Parkinson's disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nature Reviews Neuroscience, 2013, 14, 626-636.	4.9	673
20	Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble ?-synuclein. Annals of Neurology, 1998, 44, 415-422.	2.8	633
21	Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nature Reviews Neuroscience, 2015, 16, 109-120.	4.9	611
22	Distinct α-Synuclein Strains Differentially Promote Tau Inclusions in Neurons. Cell, 2013, 154, 103-117.	13.5	574
23	Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nature Reviews Neuroscience, 2012, 13, 38-50.	4.9	568
24	Age-Dependent Emergence and Progression of a Tauopathy in Transgenic Mice Overexpressing the Shortest Human Tau Isoform. Neuron, 1999, 24, 751-762.	3.8	564
25	The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nature Communications, 2011, 2, 252.	5.8	554
26	Synthetic Tau Fibrils Mediate Transmission of Neurofibrillary Tangles in a Transgenic Mouse Model of Alzheimer's-Like Tauopathy. Journal of Neuroscience, 2013, 33, 1024-1037.	1.7	548
27	Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nature Medicine, 2014, 20, 130-138.	15.2	547
28	Seeding of Normal Tau by Pathological Tau Conformers Drives Pathogenesis of Alzheimer-like Tangles. Journal of Biological Chemistry, 2011, 286, 15317-15331.	1.6	538
29	Disturbance of Nuclear and Cytoplasmic TAR DNA-binding Protein (TDP-43) Induces Disease-like Redistribution, Sequestration, and Aggregate Formation. Journal of Biological Chemistry, 2008, 283, 13302-13309.	1.6	509
30	Addition of exogenous α-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous I±-synuclein to Lewy body and Lewy neurite–like aggregates. Nature Protocols, 2014, 9, 2135-2146.	5.5	496
31	Lewy Bodies Contain Altered α-Synuclein in Brains of Many Familial Alzheimer's Disease Patients with Mutations in Presenilin and Amyloid Precursor Protein Genes. American Journal of Pathology, 1998, 153, 1365-1370.	1.9	484
32	Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathologica, 2009, 117, 137-149.	3.9	466
33	Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature, 2018, 557, 558-563.	13.7	457
34	Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain, 2018, 141, 2181-2193.	3.7	448
35	Mechanisms of Parkinson's Disease Linked to Pathological α-Synuclein: New Targets for Drug Discovery. Neuron, 2006, 52, 33-38.	3.8	437
36	Amyloid-β plaques enhance Alzheimer's brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nature Medicine, 2018, 24, 29-38.	15.2	433

#	Article	IF	CITATIONS
37	Neuropathologic substrates of Parkinson disease dementia. Annals of Neurology, 2012, 72, 587-598.	2.8	401
38	Increased F ₂ â€isoprostanes in Alzheimer's disease: evidence for enhanced lipid peroxidation <i>in vivo</i> . FASEB Journal, 1998, 12, 1777-1783.	0.2	396
39	TAR DNA-binding protein 43 in neurodegenerative disease. Nature Reviews Neurology, 2010, 6, 211-220.	4.9	396
40	Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. Journal of Clinical Investigation, 2011, 121, 726-738.	3.9	343
41	Protein transmission in neurodegenerative disease. Nature Reviews Neurology, 2020, 16, 199-212.	4.9	330
42	Concomitant TAR-DNA-Binding Protein 43 Pathology Is Present in Alzheimer Disease and Corticobasal Degeneration but Not in Other Tauopathies. Journal of Neuropathology and Experimental Neurology, 2008, 67, 555-564.	0.9	328
43	The Microtubule-Stabilizing Agent, Epothilone D, Reduces Axonal Dysfunction, Neurotoxicity, Cognitive Deficits, and Alzheimer-Like Pathology in an Interventional Study with Aged Tau Transgenic Mice. Journal of Neuroscience, 2012, 32, 3601-3611.	1.7	325
44	Therapeutic modulation of elF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nature Genetics, 2014, 46, 152-160.	9.4	321
45	Role of α-Synuclein Carboxy-Terminus on Fibril Formation in Vitroâ€. Biochemistry, 2003, 42, 8530-8540.	1.2	314
46	Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons. Annals of Neurology, 2000, 48, 77-87.	2.8	310
47	Unique pathological tau conformers from Alzheimer's brains transmit tau pathology in nontransgenic mice. Journal of Experimental Medicine, 2016, 213, 2635-2654.	4.2	310
48	<i>In Vivo</i> Microdialysis Reveals Age-Dependent Decrease of Brain Interstitial Fluid Tau Levels in P301S Human Tau Transgenic Mice. Journal of Neuroscience, 2011, 31, 13110-13117.	1.7	309
49	Widespread transneuronal propagation of α-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson's disease. Journal of Experimental Medicine, 2016, 213, 1759-1778.	4.2	309
50	Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathologica, 2010, 119, 409-419.	3.9	308
51	Expression of TDP-43 C-terminal Fragments in Vitro Recapitulates Pathological Features of TDP-43 Proteinopathies. Journal of Biological Chemistry, 2009, 284, 8516-8524.	1.6	304
52	Novel antibodies to synuclein show abundant striatal pathology in Lewy body diseases. Annals of Neurology, 2002, 52, 205-210.	2.8	300
53	Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Molecular Medicine, 2014, 6, 1142-1160.	3.3	297
54	Pathological Heterogeneity of Frontotemporal Lobar Degeneration with Ubiquitin-Positive Inclusions Delineated by Ubiquitin Immunohistochemistry and Novel Monoclonal Antibodies. American Journal of Pathology, 2006, 169, 1343-1352.	1.9	296

#	Article	IF	CITATIONS
55	Tau in cerebrospinal fluid: A potential diagnostic marker in Alzheimer's disease. Annals of Neurology, 1995, 38, 649-652.	2.8	293
56	Antibodies to ?-synuclein detect Lewy bodies in many Down's syndrome brains with Alzheimer's disease. Annals of Neurology, 1999, 45, 353-357.	2.8	289
57	α-Synuclein Immunotherapy Blocks Uptake and Templated Propagation of Misfolded α-Synuclein and Neurodegeneration. Cell Reports, 2014, 7, 2054-2065.	2.9	287
58	Enrichment of C-Terminal Fragments in TAR DNA-Binding Protein-43 Cytoplasmic Inclusions in Brain but not in Spinal Cord of Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. American Journal of Pathology, 2008, 173, 182-194.	1.9	284
59	Pathological Tau Strains from Human Brains Recapitulate the Diversity of Tauopathies in Nontransgenic Mouse Brain. Journal of Neuroscience, 2017, 37, 11406-11423.	1.7	284
60	Mouse Model of Multiple System Atrophy α-Synuclein Expression in Oligodendrocytes Causes Glial and Neuronal Degeneration. Neuron, 2005, 45, 847-859.	3.8	277
61	Neuropathology of synuclein aggregates. Journal of Neuroscience Research, 2000, 61, 121-127.	1.3	275
62	Fatal attractions: abnormal protein aggregation and neuron death in Parkinson's disease and Lewy body dementia. Cell Death and Differentiation, 1998, 5, 832-837.	5.0	272
63	Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. Journal of Clinical Investigation, 2020, 130, 1912-1930.	3.9	268
64	Neurofilaments and Orthograde Transport Are Reduced in Ventral Root Axons of Transgenic Mice that Express Human SOD1 with a G93A Mutation. Journal of Cell Biology, 1997, 139, 1307-1315.	2.3	267
65	Update on the biomarker core of the Alzheimer's Disease Neuroimaging Initiative subjects. Alzheimer's and Dementia, 2010, 6, 230-238.	0.4	256
66	Qualification of the analytical and clinical performance of CSF biomarker analyses in ADNI. Acta Neuropathologica, 2011, 121, 597-609.	3.9	256
67	Lewy Body-like α-Synuclein Aggregates Resist Degradation and Impair Macroautophagy. Journal of Biological Chemistry, 2013, 288, 15194-15210.	1.6	254
68	Evidence of Multisystem Disorder in Whole-Brain Map of Pathological TDP-43 in Amyotrophic Lateral Sclerosis. Archives of Neurology, 2008, 65, 636-41.	4.9	251
69	Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathologica, 2014, 127, 423-439.	3.9	237
70	Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease. Annals of Neurology, 2002, 51, 182-189.	2.8	232
71	Clinical and Pathological Continuum of Multisystem TDP-43 Proteinopathies. Archives of Neurology, 2009, 66, 180-9.	4.9	232
72	Altered <i>Tau</i> and Neurofilament Proteins in Neuroâ€Degenerative Diseases: Diagnostic Implications for Alzheimer's Disease and Lewy Body Dementias. Brain Pathology, 1993, 3, 45-54.	2.1	230

#	Article	IF	CITATIONS
73	Acetylated tau, a novel pathological signature in Alzheimer's disease and other tauopathies. Brain, 2012, 135, 807-818.	3.7	226
74	Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nature Neuroscience, 2018, 21, 329-340.	7.1	220
75	Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathologica, 2015, 129, 469-491.	3.9	218
76	Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43. Acta Neuropathologica, 2015, 130, 643-660.	3.9	215
77	Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer's disease or corticobasal degeneration brains. Acta Neuropathologica, 2015, 129, 221-237.	3.9	211
78	Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathologica, 2020, 140, 99-119.	3.9	210
79	Formation of α-synuclein Lewy neurite–like aggregates in axons impedes the transport of distinct endosomes. Molecular Biology of the Cell, 2014, 25, 4010-4023.	0.9	202
80	TREM2 function impedes tau seeding in neuritic plaques. Nature Neuroscience, 2019, 22, 1217-1222.	7.1	190
81	Spread of α-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nature Neuroscience, 2019, 22, 1248-1257.	7.1	187
82	Oxidative post-translational modifications of α-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Journal of Neurochemistry, 2001, 76, 637-640.	2.1	184
83	Transplanted human neurons derived from a teratocarcinoma cell line (NTera-2) mature, integrate, and survive for over 1 year in the nude mouse brain. Journal of Comparative Neurology, 1995, 357, 618-632.	0.9	182
84	Aβ Accelerates the Spatiotemporal Progression of Tau Pathology and Augments Tau Amyloidosis in an Alzheimer Mouse Model. American Journal of Pathology, 2010, 177, 1977-1988.	1.9	179
85	More than just two peas in a pod: common amyloidogenic properties of tau and α-synuclein in neurodegenerative diseases. Trends in Neurosciences, 2004, 27, 129-134.	4.2	177
86	α-Synuclein pathology in Parkinson's disease and related α-synucleinopathies. Neuroscience Letters, 2019, 709, 134316.	1.0	177
87	Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo. Nature Communications, 2018, 9, 4220.	5.8	176
88	Calcium Entry and Â-Synuclein Inclusions Elevate Dendritic Mitochondrial Oxidant Stress in Dopaminergic Neurons. Journal of Neuroscience, 2013, 33, 10154-10164.	1.7	174
89	Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC's afferent and efferent connections. Acta Neuropathologica, 2015, 130, 349-362.	3.9	174
90	TFEB enhances astroglial uptake of extracellular tau species and reduces tau spreading. Journal of Experimental Medicine, 2018, 215, 2355-2377.	4.2	173

#	Article	IF	CITATIONS
91	TDP-43 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss. Neuron, 2017, 95, 297-308.e6.	3.8	171
92	Intracerebral injection of preformed synthetic tau fibrils initiates widespread tauopathy and neuronal loss in the brains of tau transgenic mice. Neurobiology of Disease, 2015, 73, 83-95.	2.1	168
93	A platform for discovery: The University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Alzheimer's and Dementia, 2014, 10, 477.	0.4	167
94	Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathologica, 2012, 123, 825-839.	3.9	164
95	Mechanisms of Cell-to-Cell Transmission of Pathological Tau. JAMA Neurology, 2019, 76, 101.	4.5	162
96	Modeling Parkinson's disease pathology by combination of fibril seeds and α-synuclein overexpression in the rat brain. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8284-E8293.	3.3	161
97	Association of Cerebrospinal Fluid Neurofilament Light Protein Levels With Cognition in Patients With Dementia, Motor Neuron Disease, and Movement Disorders. JAMA Neurology, 2019, 76, 318.	4.5	161
98	Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia. Annals of Neurology, 2001, 49, 165-175.	2.8	159
99	Characterization of Two VQIXXK Motifs for Tau Fibrillizationin Vitroâ€. Biochemistry, 2006, 45, 15692-15701.	1.2	159
100	High-Contrast InÂVivo Imaging of Tau Pathologies in Alzheimer's and Non-Alzheimer's Disease Tauopathies. Neuron, 2021, 109, 42-58.e8.	3.8	157
101	Unique Alzheimer's Disease Paired Helical Filament Specific Epitopes Involve Double Phosphorylation at Specific Sitesâ€. Biochemistry, 1997, 36, 8114-8124.	1.2	154
102	"Fatal Attractions―of Proteins: A Comprehensive Hypothetical Mechanism Underlying Alzheimer's Disease and Other Neurodegenerative Disorders. Annals of the New York Academy of Sciences, 2000, 924, 62-67.	1.8	154
103	Spread of aggregates after olfactory bulb injection of α-synuclein fibrils is associated with early neuronal loss and is reduced long term. Acta Neuropathologica, 2018, 135, 65-83.	3.9	154
104	Sequestration of RNA in Alzheimer's disease neurofibrillary tangles and senile plaques. Annals of Neurology, 1997, 41, 200-209.	2.8	153
105	Evaluation of Potential Infectivity of Alzheimer and Parkinson Disease Proteins in Recipients of Cadaver-Derived Human Growth Hormone. JAMA Neurology, 2013, 70, 462.	4.5	153
106	Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies. Brain, 2017, 140, aww339.	3.7	153
107	Best Practices for Generating and Using Alpha-Synuclein Pre-Formed Fibrils to Model Parkinson's Disease in Rodents. Journal of Parkinson's Disease, 2018, 8, 303-322.	1.5	151
108	Deep clinical and neuropathological phenotyping of <scp>P</scp> ick disease. Annals of Neurology, 2016, 79, 272-287.	2.8	146

#	Article	IF	CITATIONS
109	Synucleins are expressed in the majority of breast and ovarian carcinomas and in preneoplastic lesions of the ovary. , 2000, 88, 2154-2163.		145
110	Sporadic Pick's disease: A tauopathy characterized by a spectrum of pathological ? isoforms in gray and white matter. Annals of Neurology, 2002, 51, 730-739.	2.8	141
111	Molecular and Biological Compatibility with Host Alpha-Synuclein Influences Fibril Pathogenicity. Cell Reports, 2016, 16, 3373-3387.	2.9	141
112	Amyloid-Beta (Aβ) Plaques Promote Seeding and Spreading of Alpha-Synuclein and Tau in a Mouse Model of Lewy Body Disorders with Aβ Pathology. Neuron, 2020, 105, 260-275.e6.	3.8	141
113	Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Frontiers in Aging Neuroscience, 2020, 12, 80.	1.7	139
114	Lewy Body Pathology in Alzheimer's Disease. Journal of Molecular Neuroscience, 2001, 17, 225-232.	1.1	138
115	Signature Tau Neuropathology in Gray and White Matter of Corticobasal Degeneration. American Journal of Pathology, 2002, 160, 2045-2053.	1.9	136
116	Immunohistochemical and Biochemical Studies Demonstrate a Distinct Profile of α-Synuclein Permutations in Multiple System Atrophy. Journal of Neuropathology and Experimental Neurology, 2000, 59, 830-841.	0.9	135
117	Perforant path synaptic loss correlates with cognitive impairment and Alzheimer's disease in the oldest-old. Brain, 2014, 137, 2578-2587.	3.7	132
118	Functional synapses are formed between human NTera2 (NT2N, hNT) neurons grown on astrocytes. , 1999, 407, 1-10.		131
119	Selective imaging of internalized proteopathic α-synuclein seeds in primary neurons reveals mechanistic insight into transmission of synucleinopathies. Journal of Biological Chemistry, 2017, 292, 13482-13497.	1.6	131
120	Ubiquitination of α-Synuclein Is Not Required for Formation of Pathological Inclusions in α-Synucleinopathies. American Journal of Pathology, 2003, 163, 91-100.	1.9	129
121	From genotype to phenotype: A clinical, pathological, and biochemical investigation of frontotemporal dementia and parkinsonism (FTDP-17) caused by the P301L tau mutation. Annals of Neurology, 1999, 45, 704-715.	2.8	128
122	RNA sequestration to pathological lesions of neurodegenerative diseases. Acta Neuropathologica, 1998, 96, 487-494.	3.9	126
123	?-synuclein is developmentally expressed in cultured rat brain oligodendrocytes. Journal of Neuroscience Research, 2000, 62, 9-14.	1.3	125
124	Passive Immunization with Phospho-Tau Antibodies Reduces Tau Pathology and Functional Deficits in Two Distinct Mouse Tauopathy Models. PLoS ONE, 2015, 10, e0125614.	1.1	124
125	Predominance of neuronal mRNAs in individual Alzheimer's disease senile plaques. Annals of Neurology, 1999, 45, 174-181.	2.8	121
126	Distinct α-Synuclein strains and implications for heterogeneity among α-Synucleinopathies. Neurobiology of Disease, 2018, 109, 209-218.	2.1	121

#	Article	IF	CITATIONS
127	Transmission of tauopathy strains is independent of their isoform composition. Nature Communications, 2020, 11, 7.	5.8	121
128	Tau and Axonopathy in Neurodegenerative Disorders. NeuroMolecular Medicine, 2002, 2, 131-150.	1.8	120
129	Transgenic animal models of tauopathies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1739, 251-259.	1.8	118
130	Human olfactory epithelium in normal aging, alzheimer's disease, and other neurodegenerative disorders. Journal of Comparative Neurology, 1991, 310, 365-376.	0.9	115
131	TDP-43 Proteinopathies: Neurodegenerative Protein Misfolding Diseases without Amyloidosis. NeuroSignals, 2008, 16, 41-51.	0.5	115
132	Therapeutic strategies for tau mediated neurodegeneration. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 784-795.	0.9	115
133	Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology. Acta Neuropathologica, 2018, 136, 363-376.	3.9	114
134	Humanization of the entire murine Mapt gene provides a murine model of pathological human tau propagation. Journal of Biological Chemistry, 2019, 294, 12754-12765.	1.6	114
135	Tau interactome maps synaptic and mitochondrial processes associated with neurodegeneration. Cell, 2022, 185, 712-728.e14.	13.5	114
136	Cardiovascular risk factors, cortisol, and amyloidâ€Î² deposition in Alzheimer's Disease Neuroimaging Initiative. Alzheimer's and Dementia, 2012, 8, 483-489.	0.4	113
137	Non-Alzheimer's contributions to dementia and cognitive resilience in The 90+ Study. Acta Neuropathologica, 2018, 136, 377-388.	3.9	112
138	Human and rodent Alzheimer beta-amyloid peptides acquire distinct conformations in membrane-mimicking solvents. FEBS Journal, 1993, 211, 249-257.	0.2	110
139	Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis. Acta Neuropathologica, 2012, 123, 395-407.	3.9	104
140	Acetylated Tau Neuropathology in Sporadic and Hereditary Tauopathies. American Journal of Pathology, 2013, 183, 344-351.	1.9	104
141	Modeling Lewy pathology propagation in Parkinson's disease. Parkinsonism and Related Disorders, 2014, 20, S85-S87.	1.1	104
142	Developing Therapeutic Approaches to Tau, Selected Kinases, and Related Neuronal Protein Targets. Cold Spring Harbor Perspectives in Medicine, 2011, 1, a006437-a006437.	2.9	101
143	Alzheimer's disease tau is a prominent pathology in LRRK2 Parkinson's disease. Acta Neuropathologica Communications, 2019, 7, 183.	2.4	101
144	A "Two-hit―Hypothesis for Inclusion Formation by Carboxyl-terminal Fragments of TDP-43 Protein Linked to RNA Depletion and Impaired Microtubule-dependent Transport. Journal of Biological Chemistry, 2011, 286, 18845-18855.	1.6	98

#	Article	IF	CITATIONS
145	Evaluating the Patterns of Aging-Related Tau Astrogliopathy Unravels Novel Insights Into Brain Aging and Neurodegenerative Diseases. Journal of Neuropathology and Experimental Neurology, 2017, 76, 270-288.	0.9	98
146	Frontotemporal dementia with novel tau pathology and a Glu342Valtau mutation. Annals of Neurology, 2000, 48, 850-858.	2.8	97
147	Elevated CSF GAPâ€43 is Alzheimer's disease specific and associated with tau and amyloid pathology. Alzheimer's and Dementia, 2019, 15, 55-64.	0.4	97
148	Expression oftrk receptors in the developing and adult human central and peripheral nervous system. Journal of Comparative Neurology, 1995, 356, 387-397.	0.9	96
149	Differential α-synuclein expression contributes to selective vulnerability of hippocampal neuron subpopulations to fibril-induced toxicity. Acta Neuropathologica, 2018, 135, 855-875.	3.9	94
150	Molecular milestones that signal axonal maturation and the commitment of human spinal cord precursor cells to the neuronal or glial phenotype in development. Journal of Comparative Neurology, 1991, 310, 285-299.	0.9	93
151	Neurofibrillary tangleâ€like tau pathology induced by synthetic tau fibrils in primary neurons overâ€expressing mutant tau. FEBS Letters, 2013, 587, 717-723.	1.3	91
152	Therapeutic strategies for the treatment of tauopathies: Hopes and challenges. Alzheimer's and Dementia, 2016, 12, 1051-1065.	0.4	91
153	Cell-to-Cell Transmission of Tau and α-Synuclein. Trends in Molecular Medicine, 2020, 26, 936-952.	3.5	91
154	Glucocerebrosidase Activity Modulates Neuronal Susceptibility to Pathological α-Synuclein Insult. Neuron, 2020, 105, 822-836.e7.	3.8	89
155	Cognitive and Pathological Influences of Tau Pathology in Lewy Body Disorders. Annals of Neurology, 2019, 85, 259-271.	2.8	88
156	Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorganic and Medicinal Chemistry, 2014, 22, 5040-5049.	1.4	87
157	Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathologica, 2018, 136, 857-872.	3.9	87
158	Twofold overexpression of human ?-amyloid precursor proteins in transgenic mice does not affect the neuromotor, cognitive, or neurodegenerative sequelae following experimental brain injury. , 1998, 392, 428-438.		83
159	Amyloid binding ligands as Alzheimer's disease therapies. Neurobiology of Aging, 2002, 23, 1039-1042.	1.5	83
160	A Distinct ER/IC Î ³ -Secretase Competes with the Proteasome for Cleavage of APP. Biochemistry, 2000, 39, 810-817.	1.2	81
161	The Fluorescent Congo Red Derivative, (Trans,) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 112 Td (Trans)â^'1	-Bromo-2 1.9	,5-Bis-(3-Hyd 81
-101	Sheet Structures in Postmortem Human Neurodegenerative Disease Brains. American Journal of Pathology. 2001. 159. 937-943.	1,9	- 01
162	Multimodal evaluation demonstrates in vivo 18F-AV-1451 uptake in autopsy-confirmed corticobasal degeneration. Acta Neuropathologica, 2016, 132, 935-937.	3.9	81

#	Article	IF	CITATIONS
163	Intrastriatal alpha-synuclein fibrils in monkeys: spreading, imaging and neuropathological changes. Brain, 2019, 142, 3565-3579.	3.7	80
164	Neuronal localization of the TNF? converting enzyme (TACE) in brain tissue and its correlation to amyloid plaques. Journal of Neurobiology, 2001, 49, 40-46.	3.7	79
165	Novel Method to Quantify Neuropil Threads in Brains from Elders With or Without Cognitive Impairment. Journal of Histochemistry and Cytochemistry, 2000, 48, 1627-1637.	1.3	77
166	Sequential stages and distribution patterns of aging-related tau astrogliopathy (ARTAG) in the human brain. Acta Neuropathologica Communications, 2018, 6, 50.	2.4	77
167	α-Synuclein (αSyn) Preformed Fibrils Induce Endogenous αSyn Aggregation, Compromise Synaptic Activity and Enhance Synapse Loss in Cultured Excitatory Hippocampal Neurons. Journal of Neuroscience, 2019, 39, 5080-5094.	1.7	76
168	The development and convergence of co-pathologies in Alzheimer's disease. Brain, 2021, 144, 953-962.	3.7	76
169	Secretion and Intracellular Generation of Truncated Aβ in β-Site Amyloid-β Precursor Protein-cleaving Enzyme Expressing Human Neurons. Journal of Biological Chemistry, 2003, 278, 4458-4466.	1.6	75
170	Activation of HIPK2 Promotes ER Stress-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis. Neuron, 2016, 91, 41-55.	3.8	75
171	Phosphorylated Tau as a Candidate Biomarker for Amyotrophic Lateral Sclerosis. JAMA Neurology, 2014, 71, 442.	4.5	74
172	Altered microtubule dynamics in neurodegenerative disease: Therapeutic potential of microtubule-stabilizing drugs. Neurobiology of Disease, 2017, 105, 328-335.	2.1	74
173	Transmission of α-synuclein seeds in neurodegenerative disease: recent developments. Laboratory Investigation, 2019, 99, 971-981.	1.7	74
174	Human tau pathology transmits glial tau aggregates in the absence of neuronal tau. Journal of Experimental Medicine, 2020, 217, .	4.2	73
175	Aggregation of α-Synuclein in S. cerevisiae is Associated with Defects in Endosomal Trafficking and Phospholipid Biosynthesis. Journal of Molecular Neuroscience, 2011, 43, 391-405.	1.1	71
176	Ï", Phosphorylation in Human, Primate, and Rat Brain: Evidence that a Pool of Ï", Is Highly Phosphorylated In Vivo and Is Rapidly Dephosphorylated In Vitro. Journal of Neurochemistry, 1994, 63, 2279-2287.	2.1	69
177	Detection of Alzheimer Disease (AD)-Specific Tau Pathology in AD and NonAD Tauopathies by Immunohistochemistry With Novel Conformation-Selective Tau Antibodies. Journal of Neuropathology and Experimental Neurology, 2018, 77, 216-228.	0.9	69
178	Impact of TREM2 risk variants on brain region-specific immune activation and plaque microenvironment in Alzheimer's disease patient brain samples. Acta Neuropathologica, 2019, 138, 613-630.	3.9	68
179	A new link between pesticides and Parkinson's disease. Nature Neuroscience, 2000, 3, 1227-1228.	7.1	67
180	Calcium dysregulation contributes to neurodegeneration in FTLD patient iPSC-derived neurons. Scientific Reports, 2016, 6, 34904.	1.6	67

#	Article	IF	CITATIONS
181	TDP-43 Promotes Neurodegeneration by Impairing Chromatin Remodeling. Current Biology, 2017, 27, 3579-3590.e6.	1.8	63
182	Selective Motor Neuron Resistance and Recovery in a New Inducible Mouse Model of TDP-43 Proteinopathy. Journal of Neuroscience, 2016, 36, 7707-7717.	1.7	62
183	The Dynamics and Turnover of Tau Aggregates in Cultured Cells. Journal of Biological Chemistry, 2016, 291, 13175-13193.	1.6	59
184	TDP-43 immunoreactivity in anoxic, ischemic and neoplastic lesions of the central nervous system. Acta Neuropathologica, 2008, 115, 305-311.	3.9	58
185	In vivo measurement of glutamate loss is associated with synapse loss in a mouse model of tauopathy. NeuroImage, 2014, 101, 185-192.	2.1	57
186	Modulating TRADD to restore cellular homeostasis and inhibit apoptosis. Nature, 2020, 587, 133-138.	13.7	57
187	Asymmetry of post-mortem neuropathology in behavioural-variant frontotemporal dementia. Brain, 2018, 141, 288-301.	3.7	56
188	An HDAC6-dependent surveillance mechanism suppresses tau-mediated neurodegeneration and cognitive decline. Nature Communications, 2020, 11, 5522.	5.8	56
189	Cognitive, neuroimaging, and pathological studies in a patient with Pick's disease. Annals of Neurology, 1998, 43, 259-265.	2.8	55
190	AD-linked R47H- <i>TREM2</i> mutation induces disease-enhancing microglial states via AKT hyperactivation. Science Translational Medicine, 2021, 13, eabe3947.	5.8	55
191	Accumulation of Intracellular Amyloid-β Peptide (Aβ 1–40) in Mucopolysaccharidosis Brains. Journal of Neuropathology and Experimental Neurology, 1999, 58, 815-824.	0.9	52
192	Characterization of tau fibrillization in vitro. Alzheimer's and Dementia, 2010, 6, 110-117.	0.4	52
193	Single-nuclei isoform RNA sequencing unlocks barcoded exon connectivity in frozen brain tissue. Nature Biotechnology, 2022, 40, 1082-1092.	9.4	52
194	Novel conformationâ€selective alphaâ€synuclein antibodies raised against different <i>in vitro</i> fibril forms show distinct patterns of Lewy pathology in Parkinson's disease. Neuropathology and Applied Neurobiology, 2017, 43, 604-620.	1.8	51
195	C9orf72 intermediate repeats are associated with corticobasal degeneration, increased C9orf72 expression and disruption of autophagy. Acta Neuropathologica, 2019, 138, 795-811.	3.9	50
196	Tau immunophenotypes in chronic traumatic encephalopathy recapitulate those of ageing and Alzheimer's disease. Brain, 2020, 143, 1572-1587.	3.7	50
197	Neurofilament sidearm proteolysis is a prominent early effect of axotomy in lamprey giant central neurons. Journal of Comparative Neurology, 1995, 353, 38-49.	0.9	49
198	The Sigma-2 Receptor/TMEM97, PGRMC1, and LDL Receptor Complex Are Responsible for the Cellular Uptake of Aβ42 and Its Protein Aggregates. Molecular Neurobiology, 2020, 57, 3803-3813.	1.9	49

#	Article	IF	CITATIONS
199	α-Synuclein modulates tau spreading in mouse brains. Journal of Experimental Medicine, 2021, 218, .	4.2	49
200	Monoclonal antibodies to purified cortical lewy bodies recognize the mid-size neurofilament subunit. Annals of Neurology, 1997, 42, 595-603.	2.8	48
201	[6] Purification of paired helical filament tau and normal tau from human brain tissue. Methods in Enzymology, 1999, 309, 81-89.	0.4	48
202	Comparative survey of the topographical distribution of signature molecular lesions in major neurodegenerative diseases. Journal of Comparative Neurology, 2013, 521, 4339-4355.	0.9	47
203	Measurements of autoâ€antibodies to αâ€synuclein in the serum and cerebral spinal fluids of patients with Parkinson's disease. Journal of Neurochemistry, 2018, 145, 489-503.	2.1	47
204	Slow Progressive Accumulation of Oligodendroglial Alpha-Synuclein (α-Syn) Pathology in Synthetic α-Syn Fibril-Induced Mouse Models of Synucleinopathy. Journal of Neuropathology and Experimental Neurology, 2019, 78, 877-890.	0.9	46
205	Evaluation of the brain-penetrant microtubule-stabilizing agent, dictyostatin, in the PS19 tau transgenic mouse model of tauopathy. Acta Neuropathologica Communications, 2016, 4, 106.	2.4	45
206	Genetic and neuroanatomic associations in sporadic frontotemporal lobar degeneration. Neurobiology of Aging, 2014, 35, 1473-1482.	1.5	43
207	Neurofilament reassembly in vitro: biochemical, morphological and immuno-electron microscopic studies employing monoclonal antibodies to defined epitopes. Brain Research, 1991, 556, 181-195.	1.1	41
208	Distinct microglial response against Alzheimer's amyloid and tau pathologies characterized by P2Y12 receptor. Brain Communications, 2021, 3, fcab011.	1.5	41
209	Cognitive reserve in frontotemporal degeneration. Neurology, 2016, 87, 1813-1819.	1.5	40
210	Aberrant activation of non-coding RNA targets of transcriptional elongation complexes contributes to TDP-43 toxicity. Nature Communications, 2018, 9, 4406.	5.8	40
211	A "Clickable―Photoconvertible Small Fluorescent Molecule as a Minimalist Probe for Tracking Individual Biomolecule Complexes. Journal of the American Chemical Society, 2019, 141, 1893-1897.	6.6	40
212	Transcriptomic Changes Due to Cytoplasmic TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin. PLoS ONE, 2015, 10, e0141836.	1.1	40
213	An insoluble frontotemporal lobar degeneration-associated TDP-43 C-terminal fragment causes neurodegeneration and hippocampus pathology in transgenic mice. Human Molecular Genetics, 2015, 24, 7241-7254.	1.4	39
214	LRRK2 inhibition does not impart protection from α-synuclein pathology and neuron death in non-transgenic mice. Acta Neuropathologica Communications, 2019, 7, 28.	2.4	39
215	Inhibition of axonal development after injection of neurofilament antibodies into aXenopus laevis embryo. Journal of Comparative Neurology, 1991, 308, 576-585.	0.9	38
216	eIF4B and eIF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS. Acta Neuropathologica Communications, 2019, 7, 62.	2.4	38

#	Article	IF	CITATIONS
217	Comparison of strategies for non-perturbing labeling of α-synuclein to study amyloidogenesis. Organic and Biomolecular Chemistry, 2016, 14, 1584-1592.	1.5	37
218	Neuronal activity modulates alpha-synuclein aggregation and spreading in organotypic brain slice cultures and in vivo. Acta Neuropathologica, 2020, 140, 831-849.	3.9	37
219	Differential effects of spinal cord gray and white matter on process outgrowth from grafted human NTERA2 neurons (NT2N, hNT). , 1999, 415, 404-418.		36
220	Dramatic Increase of the RNA Editing for Glutamate Receptor Subunits During Terminal Differentiation of Clonal Human Neurons. Journal of Neurochemistry, 1997, 69, 43-52.	2.1	36
221	Tau and 14-3-3 in glial cytoplasmic inclusions of multiple system atrophy. Acta Neuropathologica, 2003, 106, 243-250.	3.9	36
222	Characterization of tau binding by gosuranemab. Neurobiology of Disease, 2020, 146, 105120.	2.1	36
223	Individual neurofilament subunits reassembled in vitro exhibit unique biochemical, morphological and immunological properties. Brain Research, 1991, 556, 196-208.	1.1	34
224	Neuron loss and degeneration in the progression of TDP-43 in frontotemporal lobar degeneration. Acta Neuropathologica Communications, 2017, 5, 68.	2.4	34
225	LRRK2 activity does not dramatically alter α-synuclein pathology in primary neurons. Acta Neuropathologica Communications, 2018, 6, 45.	2.4	34
226	Mice with disrupted midsized and heavy neurofilament genes lack axonal neurofilaments but have unaltered numbers of axonal microtubules. , 1999, 57, 23-32.		33
227	MT-Stabilizer, Dictyostatin, Exhibits Prolonged Brain Retention and Activity: Potential Therapeutic Implications. ACS Medicinal Chemistry Letters, 2013, 4, 886-889.	1.3	33
228	Neurotrophins and neuronal versus glial differentiation in medulloblastomas and other pediatric brain tumors. Acta Neuropathologica, 1998, 95, 325-332.	3.9	32
229	Frontotemporal dementia and tauopathy. Current Neurology and Neuroscience Reports, 2001, 1, 413-421.	2.0	32
230	Evaluation of Oxetan-3-ol, Thietan-3-ol, and Derivatives Thereof as Bioisosteres of the Carboxylic Acid Functional Group. ACS Medicinal Chemistry Letters, 2017, 8, 864-868.	1.3	32
231	Forebrain overexpression of α-synuclein leads to early postnatal hippocampal neuron loss and synaptic disruption. Experimental Neurology, 2010, 221, 86-97.	2.0	31
232	UNC13A polymorphism contributes to frontotemporal disease in sporadic amyotrophic lateral sclerosis. Neurobiology of Aging, 2019, 73, 190-199.	1.5	31
233	Characterization of novel conformation-selective α-synuclein antibodies as potential immunotherapeutic agents for Parkinson's disease. Neurobiology of Disease, 2020, 136, 104712.	2.1	31
234	Unbiased Proteomics of Early Lewy Body Formation Model Implicates Active Microtubule Affinity-Regulating Kinases (MARKs) in Synucleinopathies. Journal of Neuroscience, 2017, 37, 5870-5884.	1.7	30

#	Article	IF	CITATIONS
235	Activity of the poly(A) binding protein MSUT2 determines susceptibility to pathological tau in the mammalian brain. Science Translational Medicine, 2019, 11, .	5.8	30
236	In vitro amplification of pathogenic tau conserves disease-specific bioactive characteristics. Acta Neuropathologica, 2021, 141, 193-215.	3.9	30
237	Computational modeling of tau pathology spread reveals patterns of regional vulnerability and the impact of a genetic risk factor. Science Advances, 2021, 7, .	4.7	30
238	The Differential Role of Protein Kinase C Isozyme in the Rapid Induction of Neurofilament Phosphorylation by Nerve Growth Factor and Phorbol Esters in PC12 Cells. Journal of Neurochemistry, 1991, 57, 802-810.	2.1	29
239	Alpha-synuclein from patient Lewy bodies exhibits distinct pathological activity that can be propagated in vitro. Acta Neuropathologica Communications, 2021, 9, 188.	2.4	29
240	Distinct characteristics of limbic-predominant age-related TDP-43 encephalopathy in Lewy body disease. Acta Neuropathologica, 2022, 143, 15-31.	3.9	29
241	Drosha Inclusions Are New Components of Dipeptide-Repeat Protein Aggregates in FTLD-TDP and ALSC9orf72Expansion Cases. Journal of Neuropathology and Experimental Neurology, 2015, 74, 380-387.	0.9	28
242	GFP-Mutant Human Tau Transgenic Mice Develop Tauopathy Following CNS Injections of Alzheimer's Brain-Derived Pathological Tau or Synthetic Mutant Human Tau Fibrils. Journal of Neuroscience, 2017, 37, 11485-11494.	1.7	28
243	Reduction of matrix metalloproteinase 9 (MMP-9) protects motor neurons from TDP-43-triggered death in rNLS8 mice. Neurobiology of Disease, 2019, 124, 133-140.	2.1	28
244	A brain-penetrant triazolopyrimidine enhances microtubule-stability, reduces axonal dysfunction and decreases tau pathology in a mouse tauopathy model. Molecular Neurodegeneration, 2018, 13, 59.	4.4	27
245	Detection of Alzheimer's disease (AD) specific tau pathology with conformation-selective anti-tau monoclonal antibody in co-morbid frontotemporal lobar degeneration-tau (FTLD-tau). Acta Neuropathologica Communications, 2019, 7, 34.	2.4	27
246	Fluent molecular mixing of Tau isoforms in Alzheimer's disease neurofibrillary tangles. Nature Communications, 2022, 13, .	5.8	27
247	The effects of aspartic acidâ€bond isomerization on <i>in vitro</i> properties of the amyloid βâ€peptide as modeled with <i>N</i> â€terminal decapeptide fragments. International Journal of Peptide and Protein Research, 1996, 47, 289-296.	0.1	26
248	Myelin oligodendrocyte basic protein and prognosis in behavioral-variant frontotemporal dementia. Neurology, 2014, 83, 502-509.	1.5	26
249	Converging Patterns of α-Synuclein Pathology in Multiple System Atrophy. Journal of Neuropathology and Experimental Neurology, 2018, 77, 1005-1016.	0.9	26
250	Cerebrospinal Fluid Total and Phosphorylated α-Synuclein in Patients with Creutzfeldt–Jakob Disease and Synucleinopathy. Molecular Neurobiology, 2019, 56, 3476-3483.	1.9	26
251	Neurotrophin signal transduction in medulloblastoma. Journal of Neuroscience Research, 1997, 49, 522-527.	1.3	25
252	Novel monoclonal antibodies to normal and pathologically altered human TDP-43 proteins. Acta Neuropathologica Communications, 2014, 2, 33.	2.4	25

#	Article	IF	CITATIONS
253	Distinct brainâ€derived TDPâ€43 strains from FTLDâ€TDP subtypes induce diverse morphological TDPâ€43 aggregates and spreading patterns <i>in vitro</i> and <i>in vivo</i> . Neuropathology and Applied Neurobiology, 2021, 47, 1033-1049.	1.8	25
254	Microglial transcriptome analysis in the rNLS8 mouse model of TDP-43 proteinopathy reveals discrete expression profiles associated with neurodegenerative progression and recovery. Acta Neuropathologica Communications, 2021, 9, 140.	2.4	25
255	Synthesis and characterization of high affinity fluorogenic α-synuclein probes. Chemical Communications, 2020, 56, 3567-3570.	2.2	24
256	Defining and predicting transdiagnostic categories of neurodegenerative disease. Nature Biomedical Engineering, 2020, 4, 787-800.	11.6	22
257	Neurofilament breakdown products in degenerating rat and human peripheral nerves. Annals of Neurology, 1984, 16, 349-355.	2.8	21
258	Stereotaxic Targeting of Alpha-Synuclein Pathology in Mouse Brain Using Preformed Fibrils. Methods in Molecular Biology, 2019, 1948, 45-57.	0.4	21
259	Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies. Acta Neuropathologica Communications, 2019, 7, 65.	2.4	20
260	Conformation-selective tau monoclonal antibodies inhibit tau pathology in primary neurons and a mouse model of Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 64.	4.4	19
261	Effects of microglial depletion and TREM2 deficiency on Aβ plaque burden and neuritic plaque tau pathology in 5XFAD mice. Acta Neuropathologica Communications, 2021, 9, 150.	2.4	19
262	Effect of Genetic Risk Factors and Disease Progression on the Cerebrospinal Fluid Tau Levels in Alzheimer's Disease. Journal of the American Geriatrics Society, 1997, 45, 1228-1231.	1.3	18
263	High copy wildtype human 1N4R tau expression promotes early pathological tauopathy accompanied by cognitive deficits without progressive neurofibrillary degeneration. Acta Neuropathologica Communications, 2015, 3, 33.	2.4	18
264	Evaluation of the Structure–Activity Relationship of Microtubule-Targeting 1,2,4-Triazolo[1,5- <i>a</i>]pyrimidines Identifies New Candidates for Neurodegenerative Tauopathies. Journal of Medicinal Chemistry, 2021, 64, 1073-1102.	2.9	17
265	A model for improving the treatment and care of Alzheimer's disease patients through interdisciplinary research. , 2012, 8, 564-573.		16
266	Progression of motor neuron disease is accelerated and the ability to recover is compromised with advanced age in rNLS8 mice. Acta Neuropathologica Communications, 2016, 4, 105.	2.4	16
267	Conserved Lysine Acetylation within the Microtubule-Binding Domain Regulates MAP2/Tau Family Members. PLoS ONE, 2016, 11, e0168913.	1.1	16
268	Nasal vaccine delivery attenuates brain pathology and cognitive impairment in tauopathy model mice. Npj Vaccines, 2020, 5, 28.	2.9	15
269	TMEM106B modifies TDP-43 pathology in human ALS brain and cell-based models of TDP-43 proteinopathy. Acta Neuropathologica, 2021, 142, 629-642.	3.9	15
270	Neurofilaments of aged rats: The strengthened interneurofilament interaction and the reduced amount of NF-M. Journal of Neuroscience Research, 1999, 58, 337-348.	1.3	14

#	Article	IF	CITATIONS
271	Common neuropathological features underlie distinct clinical presentations in three siblings with hereditary diffuse leukoencephalopathy with spheroids caused by CSF1R p.Arg782His. Acta Neuropathologica Communications, 2015, 3, 42.	2.4	14
272	The use of mouse models to study cell-to-cell transmission of pathological tau. Methods in Cell Biology, 2017, 141, 287-305.	0.5	14
273	Poly (ADP-ribose) Interacts With Phosphorylated α-Synuclein in Post Mortem PD Samples. Frontiers in Aging Neuroscience, 2021, 13, 704041.	1.7	14
274	Biochemical and pathological characterization of frontotemporal dementia due to a Leu266Val mutation in microtubule-associated protein tau in an African American individual. Acta Neuropathologica, 2007, 113, 471-479.	3.9	12
275	Neuroimmune interactions in Alzheimer's disease—New frontier with old challenges?. Progress in Molecular Biology and Translational Science, 2019, 168, 183-201.	0.9	12
276	Genetic predictors of survival in behavioral variant frontotemporal degeneration. Neurology, 2019, 93, e1707-e1714.	1.5	11
277	Correction of microtubule defects within Aβ plaqueâ€associated dystrophic axons results in lowered Aβ release and plaque deposition. Alzheimer's and Dementia, 2020, 16, 1345-1357.	0.4	11
278	Compound screening in cell-based models of tau inclusion formation: Comparison of primary neuron and HEK293 cell assays. Journal of Biological Chemistry, 2020, 295, 4001-4013.	1.6	10
279	Inhibition of CK2 mitigates Alzheimer's tau pathology by preventing NR2B synaptic mislocalization. Acta Neuropathologica Communications, 2022, 10, 30.	2.4	8
280	Potent, Long-Acting Cyclopentane-1,3-Dione Thromboxane (A ₂)-Receptor Antagonists. ACS Medicinal Chemistry Letters, 2014, 5, 1015-1020.	1.3	6
281	Insoluble Tau From Human FTDP-17 Cases Exhibit Unique Transmission Properties In Vivo. Journal of Neuropathology and Experimental Neurology, 2020, 79, 941-949.	0.9	6
282	Domain structure of neurofilament subunits as revealed by monoclonal antibodies. Journal of Cellular Biochemistry, 1985, 27, 181-187.	1.2	5
283	LRRK2 Kinase Activity Does Not Alter Cell-Autonomous Tau Pathology Development in Primary Neurons. Journal of Parkinson's Disease, 2021, 11, 1187-1196.	1.5	5
284	Frontotemporal dementia with novel tau pathology and a Glu342Val tau mutation. Annals of Neurology, 2000, 48, 850-858.	2.8	5
285	Parkinson's disease, dementia with Lewy bodies, multiple system atrophy and the spectrum of diseases with α-synuclein inclusions. , 2004, , 353-375.		5
286	Neurofilament Light Chain Related to Longitudinal Decline in Frontotemporal Lobar Degeneration. Neurology: Clinical Practice, 2021, 11, 105-116.	0.8	5
287	Modeling the cellular fate of alpha-synuclein aggregates: A pathway to pathology. Current Opinion in Neurobiology, 2022, 72, 171-177.	2.0	5
288	Thorn-shaped astrocytes in the depth of cortical sulci in Western Pacific ALS/Parkinsonism-Dementia complex. Acta Neuropathologica, 2020, 140, 591-593.	3.9	4

#	Article	IF	CITATIONS
289	Predominance of neuronal mRNAs in individual Alzheimer's disease senile plaques. Annals of Neurology, 1999, 45, 174-181.	2.8	4
290	Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons. , 2000, 48, 77.		4
291	Slow motor neurons resist pathological TDP-43 and mediate motor recovery in the rNLS8 model of amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2022, 10, 75.	2.4	3
292	ICâ€Pâ€186: [¹¹ C]PBB3 PET Visualizes TAU Aggregates in Patients with FTDPâ€17 MAPT Gene Mutation. Alzheimer's and Dementia, 2016, 12, P135.	0.4	2
293	Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury. Journal of Neurochemistry, 2004, 90, 1541-1541.	2.1	1
294	Frontotemporal lobar degeneration. , 2005, , 481-493.		1
295	Phiel et al. reply. Nature, 2011, 480, E6-E6.	13.7	1
296	P2â€163: Performance Evaluation of New Absorbanceâ€Based Elisas for Measuring Different Alphaâ€Synuclein (Aâ€SYN) Species in CSF and Plasma. Alzheimer's and Dementia, 2016, 12, P677.	0.4	1
297	Neurotrophin signal transduction in medulloblastoma. Journal of Neuroscience Research, 1997, 49, 522-527.	1.3	1
298	Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons. , 2000, 48, 77.		1
299	Research on the Brain. Science of Aging Knowledge Environment: SAGE KE, 2003, 2003, 29pe-29.	0.9	1
300	O2â€10â€05: Cerebrospinal Fluid Levels of Amyloid Beta and Tau as Endophenotypes Reveal Novel Variants Potentially Informative for Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P252.	0.4	0
301	[PLâ€04–02–01]: CELLâ€TOâ€CELL TRANSMISSION OF PATHOLOGICAL TAU: A POTENTIAL MECHANISM OF PROGRESSION IN ALZHEIMER'S AND OTHER TAUOPATHIES. Alzheimer's and Dementia, 2017, 13, P1224.	DISEASE 0.4	0
302	P1â€139: THE CONTRIBUTION OF SEXâ€SPECIFIC ASSOCIATIONS IN GENETIC STUDIES OF ALZHEIMER'S DISEASE PATHOLOGY. Alzheimer's and Dementia, 2018, 14, P327.	0.4	0
303	Mechanisms of slow axonal transport of $\hat{I}\pm \hat{a}\in s$ ynuclein. FASEB Journal, 2007, 21, A28.	0.2	0
304	TDPâ€43 immunoreactivity in anoxic, ischemic and proliferating lesion of the central nervous system. FASEB Journal, 2008, 22, 708.13.	0.2	0