## Junwei Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/88735/publications.pdf Version: 2024-02-01



IUNNAEL SU

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Impacts of Pore-Throat System on Fractal Characterization of Tight Sandstones. Geofluids, 2020, 2020,<br>1-17.                                                                                             | 0.7 | 69        |
| 2  | Discrete element simulation of particle flow in arbitrarily complex geometries. Chemical Engineering Science, 2011, 66, 6069-6088.                                                                         | 3.8 | 61        |
| 3  | Solution of population balance equation using quadrature method of moments with an adjustable factor. Chemical Engineering Science, 2007, 62, 5897-5911.                                                   | 3.8 | 50        |
| 4  | Pore-scale direct numerical simulation of particle transport in porous media. Chemical Engineering<br>Science, 2019, 199, 613-627.                                                                         | 3.8 | 50        |
| 5  | A twoâ€layer mesh method for discrete element simulation of gasâ€particle systems with arbitrarily polyhedral mesh. International Journal for Numerical Methods in Engineering, 2015, 103, 759-780.        | 2.8 | 37        |
| 6  | Numerical study on flow field and pollutant dispersion in an ideal street canyon within a real tree<br>model at different wind velocities. Computers and Mathematics With Applications, 2021, 81, 679-692. | 2.7 | 35        |
| 7  | Effects of real trees and their structure on pollutant dispersion and flow field in an idealized street canyon. Atmospheric Pollution Research, 2019, 10, 1699-1710.                                       | 3.8 | 26        |
| 8  | An adaptive direct quadrature method of moment for population balance equations. AICHE Journal, 2008, 54, 2872-2887.                                                                                       | 3.6 | 24        |
| 9  | Direct numerical simulation of pore scale particle-water-oil transport in porous media. Journal of<br>Petroleum Science and Engineering, 2019, 180, 159-175.                                               | 4.2 | 23        |
| 10 | Advances in numerical methods for the solution of population balance equations for disperse phase systems. Science in China Series B: Chemistry, 2009, 52, 1063-1079.                                      | 0.8 | 19        |
| 11 | Experimental evaluation of a capillary heating bed driven by an air source heat pump and solar energy.<br>Indoor and Built Environment, 2020, 29, 1399-1411.                                               | 2.8 | 17        |
| 12 | Direct numerical simulation of particle pore-scale transport through three-dimensional porous media with arbitrarily polyhedral mesh. Powder Technology, 2020, 367, 576-596.                               | 4.2 | 17        |
| 13 | An improved version of RIGID for discrete element simulation of particle flows with arbitrarily complex geometries. Powder Technology, 2014, 253, 393-405.                                                 | 4.2 | 16        |
| 14 | LES simulation of flow field and pollutant dispersion in a street canyon under time-varying inflows with TimeVarying-SIMPLE approach. Building and Environment, 2019, 157, 185-196.                        | 6.9 | 16        |
| 15 | Advances in Pore-Scale Simulation of Oil Reservoirs. Energies, 2018, 11, 1132.                                                                                                                             | 3.1 | 15        |
| 16 | Investigation on droplet dynamic snap-off process in a short, abrupt constriction. Chemical<br>Engineering Science, 2021, 235, 116496.                                                                     | 3.8 | 14        |
| 17 | Effect of Viscosity Action and Capillarity on Pore-Scale Oil–Water Flowing Behaviors in a Low-Permeability Sandstone Waterflood. Energies, 2021, 14, 8200.                                                 | 3.1 | 12        |
| 18 | Simulation of micro-behaviors including nucleation, growth, and aggregation in particle system.<br>Science in China Series B: Chemistry, 2009, 52, 241-248.                                                | 0.8 | 9         |

Junwei Su

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The nature of a universal subgrid eddy viscosity model in a turbulent channel flow. Europhysics<br>Letters, 2011, 94, 34003.                                                                     | 2.0 | 9         |
| 20 | An Efficient RIGID Algorithm and Its Application to the Simulation of Particle Transport in Porous<br>Medium. Transport in Porous Media, 2016, 114, 99-131.                                      | 2.6 | 9         |
| 21 | Effect of Street Canyon Shape and Tree Layout on Pollutant Diffusion under Real Tree Model.<br>Sustainability, 2020, 12, 2105.                                                                   | 3.2 | 8         |
| 22 | Pore-Scale Simulation of Particle Flooding for Enhancing Oil Recovery. Energies, 2021, 14, 2305.                                                                                                 | 3.1 | 7         |
| 23 | A geometrical criterion for the dynamic snap-off event of a non-wetting droplet in a rectangular pore–throat microchannel. Physics of Fluids, 2022, 34, .                                        | 4.0 | 7         |
| 24 | Investigation of the Effect of Capillary Barrier on Water–Oil Movement in Water Flooding. Applied<br>Sciences (Switzerland), 2022, 12, 6285.                                                     | 2.5 | 7         |
| 25 | An Overview of Triggering Mechanisms and Characteristics of Local Strong Sandstorms in China and Haboobs. Atmosphere, 2021, 12, 752.                                                             | 2.3 | 6         |
| 26 | Examining the physical and chemical contributions to size spectrum evolution during the development of hazes. Scientific Reports, 2020, 10, 5347.                                                | 3.3 | 3         |
| 27 | A consistent sharp interface fictitious domain method for moving boundary problems with arbitrarily polyhedral mesh. International Journal for Numerical Methods in Fluids, 2021, 93, 2065-2088. | 1.6 | 3         |
| 28 | Improving the Accuracy of Fictitious Domain Method Using Indicator Function from Volume<br>Intersection. Advances in Mathematical Physics, 2019, 2019, 1-18.                                     | 0.8 | 2         |
| 29 | A Numerical Study on Influent Flow Rate Variations in a Secondary Settling Tank. Processes, 2019, 7, 884.                                                                                        | 2.8 | 2         |
| 30 | Local Fixed Pivot Quadrature Method of Moments for Solution of Population Balance Equation.<br>Processes, 2018, 6, 209.                                                                          | 2.8 | 1         |
| 31 | Splicing Method of Micro-Nano-Scale Pore Radius Distribution in Tight Sandstone Reservoir. Energies, 2022, 15, 1642.                                                                             | 3.1 | 1         |
| 32 | Self-Coupling Black Box Model of a Dynamic System Based on ANN and Its Application. Mathematical<br>Problems in Engineering, 2020, 2020, 1-12.                                                   | 1.1 | 0         |
| 33 | 10.1063/5.0087523.3. , 2022, , .                                                                                                                                                                 |     | 0         |
| 34 | 10.1063/5.0087523.1., 2022,,.                                                                                                                                                                    |     | 0         |
| 35 | 10.1063/5.0087523.7. , 2022, , .                                                                                                                                                                 |     | 0         |
| 36 | 10.1063/5.0087523.4. , 2022, , .                                                                                                                                                                 |     | 0         |

| #  | Article                         | IF | CITATIONS |
|----|---------------------------------|----|-----------|
| 37 | 10.1063/5.0087523.2., 2022, , . |    | 0         |
| 38 | 10.1063/5.0087523.5., 2022, , . |    | 0         |
| 39 | 10.1063/5.0087523.6., 2022,,.   |    | 0         |