Uvanesh Kasiviswanathan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8873247/publications.pdf

Version: 2024-02-01

686830 676716 36 511 13 22 citations h-index g-index papers 36 36 36 614 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Functional Behavior of the Primary Cortical Neuronal Cells on the Large Surface of TiOâ,, and SnOâ,, Based Biosensing Device. IEEE Transactions on Nanobioscience, 2021, 20, 138-145.	2.2	4
2	Aluminium Oxide Thin-Film Based In Vitro Cell-Substrate Sensing Device for Monitoring Proliferation of Myoblast Cells. IEEE Transactions on Nanobioscience, 2021, 20, 331-337.	2.2	2
3	Extended Large Area Si/ZnO Heterojunction Biosensor for Assessing Functional Behavior of Primary Cortical Neuronal Cells. IEEE Sensors Journal, 2021, 21, 14619-14626.	2.4	4
4	Fabrication of MSM-Based Biosensing Device for Assessing Dynamic Behavior of Adherent Mammalian Cells. IEEE Sensors Journal, 2020, 20, 9652-9659.	2.4	6
5	Gelatin grafted poly(<scp>D,L</scp> â€ <scp>lactide</scp>) as an inhibitor of protein aggregation: An <scp><i>in vitro</i></scp> case study. Biopolymers, 2020, 111, e23383.	1.2	1
6	A portable standalone wireless electric cell-substrate impedance sensing (ECIS) system for assessing dynamic behavior of mammalian cells. Journal of Analytical Science and Technology, 2020, 11 , .	1.0	9
7	Development of a Surface EMG-Based Control System for Controlling Assistive Devices. , 2020, , 765-785.		O
8	Changes in electrolyte concentrations alter the impedance during ischemia-reperfusion injury in rat brain. Physiological Measurement, 2019, 40, 105004.	1.2	14
9	Importance of Bio-signal for Rehabilitative Engineering. , 2019, , 453-469.		O
10	Development of Human Speech Signal-Based Intelligent Human-Computer Interface for Driving a Wheelchair in Enhancing the Quality-of-Life of the Persons. Advances in Healthcare Information Systems and Administration Book Series, 2019, , 21-60.	0.2	2
11	Novel agar–stearyl alcohol oleogel-based bigels as structured delivery vehicles. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 669-678.	1.8	51
12	Stearic Acid Modified Stearyl Alcohol Oleogel: Analysis of the Thermal, Mechanical and Drug Release Properties. Journal of Surfactants and Detergents, 2017, 20, 851-861.	1.0	23
13	Magnetic nanoparticle incorporated oleogel as iontophoretic drug delivery system. Colloids and Surfaces B: Biointerfaces, 2017, 157, 118-129.	2.5	34
14	An in-Depth Analysis of the Swelling, Mechanical, Electrical, and Drug Release Properties of Agar–Gelatin Co-Hydrogels. Polymer-Plastics Technology and Engineering, 2017, 56, 667-677.	1.9	3
15	Feature Extraction and Classification of Speech Signal Using Hidden Markov-Gaussian Mixture Model (HM-GMM) for Driving the Rehabilitative Aids. , 2017, , .		1
16	Effect of Span 60 on the Microstructure, Crystallization Kinetics, and Mechanical Properties of Stearic Acid Oleogels: An Inâ€Depth Analysis. Journal of Food Science, 2016, 81, E380-7.	1.5	43
17	Effect of Polysaccharides on the Properties of the Mucoadhesive Poly(Vinyl Alcohol) Multicore–Shell Microparticles. Polymer-Plastics Technology and Engineering, 2016, 55, 879-888.	1.9	1
18	An In-depth Analysis of the Mechanical, Electrical, and Drug Release Properties of Gelatin–Starch Phase-Separated Hydrogels. Polymer-Plastics Technology and Engineering, 2016, 55, 1731-1742.	1.9	4

#	Article	IF	Citations
19	Natural gum modified emulsion gel as single carrier for the oral delivery of probiotic-drug combination. International Journal of Biological Macromolecules, 2016, 92, 504-514.	3.6	31
20	Alginate Bead Based Hexagonal Close Packed 3D Implant for Bone Tissue Engineering. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32132-32145.	4.0	37
21	Effect of sorbitan monostearate concentration on the thermal, mechanical and drug release properties of oleogels. Korean Journal of Chemical Engineering, 2016, 33, 1720-1727.	1.2	36
22	Effect of Tween 20 on the Properties of Stearate Oleogels: an inâ€Depth Analysis. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 711-719.	0.8	31
23	Substrate stiffness does affect the fate of human keratinocytes. RSC Advances, 2016, 6, 3539-3551.	1.7	23
24	Effect of mechanical and electrical behavior of gelatin hydrogels on drug release and cell proliferation. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53, 174-186.	1.5	32
25	Development of ionic and nonâ€ionic natural gumâ€based bigels: Prospects for drug delivery application. Journal of Applied Polymer Science, 2015, 132, .	1.3	23
26	Development and characterization of gelatin-tamarind gum/carboxymethyl tamarind gum based phase-separated hydrogels: a comparative study. Designed Monomers and Polymers, 2015, 18, 434-450.	0.7	20
27	Modulating the properties of sunflower oil based novel emulgels using castor oil fatty acid ester: Prospects for topical antimicrobial drug delivery. Colloids and Surfaces B: Biointerfaces, 2015, 128, 155-164.	2.5	16
28	Synthesis and characterization of novel dual environment-responsive hydrogels of Hydroxyethyl methacrylate and Methyl cellulose. Designed Monomers and Polymers, 2015, 18, 367-377.	0.7	9
29	Evaluation extracellular matrix–chitosan composite films for wound healing application. Journal of Materials Science: Materials in Medicine, 2015, 26, 220.	1.7	9
30	Designing of a dual channel impedance analyzer for biological measurements. , 2014, , .		0
31	Designing of an infra-red optocoupler based mobility aid for the blinds. , 2014, , .		О
32	Development of an ultrasonic cane as a navigation aid for the blind people. , 2014, , .		34
33	Development of an ambulatory universal bio potential recording device. , 2014, , .		4
34	Effect of Non-Ionic Hydrophilic and Hydrophobic Surfactants on the Properties on the Stearate Oleogels. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 0, , 260-279.	0.1	2
35	Classification of Surface Electromyogram Signals Acquired from the Forearm of a Healthy Volunteer. Advances in Medical Technologies and Clinical Practice Book Series, 0, , 315-333.	0.3	1
36	Development of a Surface EMG-Based Control System for Controlling Assistive Devices. Advances in Medical Technologies and Clinical Practice Book Series, 0, , 335-355.	0.3	1