Vladimir A Larionov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8873203/publications.pdf

Version: 2024-02-01

516710 526287 31 747 16 27 citations g-index h-index papers 34 34 34 657 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chiral Cobalt(III) Complexes as Bifunctional BrÃ,nsted Acid–Lewis Base Catalysts for the Preparation of Cyclic Organic Carbonates. ChemSusChem, 2016, 9, 216-222.	6.8	79
2	Chiral Octahedral Complexes of Cobalt(III) as "Organic Catalysts in Disguise―for the Asymmetric Addition of a Glycine Schiff Base Ester to Activated Olefins. Advanced Synthesis and Catalysis, 2014, 356, 1803-1810.	4.3	66
3	Asymmetric catalysis with octahedral stereogenic-at-metal complexes featuring chiral ligands. Coordination Chemistry Reviews, 2018, 376, 95-113.	18.8	51
4	Chiral Octahedral Complexes of Co ^{III} As a Family of Asymmetric Catalysts Operating under Phase Transfer Conditions. ACS Catalysis, 2013, 3, 1951-1955.	11.2	47
5	Chiral octahedral complexes of Co(<scp>iii</scp>) as catalysts for asymmetric epoxidation of chalcones under phase transfer conditions. RSC Advances, 2015, 5, 72764-72771.	3.6	43
6	Asymmetric Nazarov Cyclizations Catalyzed by Chiralâ€atâ€Metal Complexes. Advanced Synthesis and Catalysis, 2018, 360, 2093-2100.	4.3	37
7	Advances in Asymmetric Amino Acid Synthesis Enabled by Radical Chemistry. Advanced Synthesis and Catalysis, 2020, 362, 4325-4367.	4.3	37
8	Polymer-Supported Chiral-at-Metal Lewis Acid Catalysts. Organometallics, 2017, 36, 1457-1460.	2.3	36
9	Kinetic Resolution of Epoxides with CO 2 Catalyzed by a Chiralâ€atâ€Iridium Complex. ChemSusChem, 2019, 12, 320-325.	6.8	33
10	Enantioselective "organocatalysis in disguise―by the ligand sphere of chiral metal-templated complexes. Chemical Society Reviews, 2021, 50, 9715-9740.	38.1	31
11	Selfâ€Assembled Ionic Composites of Negatively Charged Zn(salen) Complexes and Triphenylmethane Derived Polycations as Recyclable Catalysts for the Addition of Carbon Dioxide to Epoxides. ChemCatChem, 2019, 11, 511-519.	3.7	28
12	Interaction of a trinuclear copper(<scp>i</scp>) pyrazolate with alkynes and carbon–carbon triple bond activation. Chemical Communications, 2019, 55, 290-293.	4.1	27
13	A general synthesis of unnatural α-amino acids by iron-catalysed olefin–olefin coupling <i>via</i> generated radicals. Organic Chemistry Frontiers, 2019, 6, 1094-1099.	4.5	24
14	Mechanistic study in azide-alkyne cycloaddition (CuAAC) catalyzed by bifunctional trinuclear copper(I) pyrazolate complex: Shift in rate-determining step. Journal of Catalysis, 2020, 390, 37-45.	6.2	23
15	The Elaboration of a General Approach to the Asymmetric Synthesis of 1,4â€Substituted 1,2,3â€Triazole Containing Amino Acids ⟨i⟩via⟨ i⟩ Ni(II) Complexes. ChemistrySelect, 2018, 3, 3107-3110.	1.5	22
16	The Selective <i>N</i> â€Functionalization of Indoles via <i>aza</i> â€Michael Addition in the Ligand Sphere of a Chiral Nickel(II) Complex: Asymmetric Synthesis of (<i>S</i>)â€1 <i>H</i> â€Indoleâ€Alanine Derivatives. European Journal of Organic Chemistry, 2019, 2019, 3699-3703.	2.4	19
17	An octahedral cobalt(<scp>iii</scp>) complex based on cheap 1,2-phenylenediamine as a bifunctional metal-templated hydrogen bond donor catalyst for fixation of CO ₂ with epoxides under ambient conditions. Inorganic Chemistry Frontiers, 2021, 8, 3871-3884.	6.0	18
18	A novel type of catalysts for the asymmetric C-C bond formation based on chiral stereochemically inert cationic Co iii complexes. Russian Chemical Bulletin, 2012, 61, 2252-2260.	1.5	14

#	Article	IF	Citations
19	Economical Synthesis of α-Amino Acids from a Novel Family of Easily Available Schiff Bases of Glycine Esters and 2-HydroxyÂbenzophenone. Synthesis, 2018, 50, 607-616.	2.3	14
20	Expanding the Family of Octahedral Chiral-at-Metal Cobalt(III) Catalysts by Introducing Tertiary Amine Moiety into the Ligand. Catalysts, 2021, 11, 152.	3.5	14
21	A novel type of catalysts for asymmetric oxidative coupling of 2-naphthol. Russian Chemical Bulletin, 2016, 65, 685-688.	1.5	13
22	Henry Reaction Revisited. Crucial Role of Water in an Asymmetric Henry Reaction Catalyzed by Chiral NNO-Type Copper(II) Complexes. Inorganic Chemistry, 2019, 58, 11051-11065.	4.0	13
23	Asymmetric Metalâ€Templated Route to Amino Acids with 3â€Spiropyrrolidine Oxindole Core via a 1,3â€Dipolar Addition of Azomethine Ylides to a Chiral Dehydroalanine Ni(II) Complex. Advanced Synthesis and Catalysis, 2022, 364, 2395-2402.	4.3	12
24	The charge-assisted hydrogen-bonded organic framework (CAHOF) self-assembled from the conjugated acid of tetrakis(4-aminophenyl)methane and 2,6-naphthalenedisulfonate as a new class of recyclable BrÃ,nsted acid catalysts. Beilstein Journal of Organic Chemistry, 2020, 16, 1124-1134.	2.2	10
25	Synthesis and a Catalytic Study of Diastereomeric Cationic Chiral-at-Cobalt Complexes Based on (<i>R</i> , <i>R</i>)-1,2-Diphenylethylenediamine. Inorganic Chemistry, 2021, 60, 13960-13967.	4.0	8
26	Synthesis and Investigations of Chiral NNO Type Copper(II) Coordination Polymers. ChemistrySelect, 2018, 3, 653-656.	1.5	7
27	Asymmetric Synthesis of Perfluoroalkylated αâ€Amino Acids through Generated Radicals Using a Chiral Ni(II) Complex. Helvetica Chimica Acta, 2021, 104, .	1.6	6
28	A general asymmetric synthesis of artificial aliphatic and perfluoroalkylated α-amino acids by Luche's cross-electrophile coupling reaction. Organic and Biomolecular Chemistry, 2021, 19, 5327-5332.	2.8	5
29	Cobalt(III) Complexes as Bifunctional Hydrogen Bond Donor Catalysts Featuring Halide Anions for Cyclic Carbonate Synthesis at Ambient Temperature and Pressure: Mechanistic Insight. Asian Journal of Organic Chemistry, 0, , .	2.7	5
30	Family of Well-Defined Chiral-at-Cobalt(III) Complexes as Metal-Templated Hydrogen-Bond-Donor Catalysts: Effect of Chirality at the Metal Center on the Stereochemical Outcome of the Reaction. Inorganic Chemistry, 2022, 61, 5512-5523.	4.0	3
31	Half-sandwich complexes of group 9 metals with N,Nʹ-ligands for CF3-carbenoid alkylation of N-(pyrimidin-2-yl)indole. Journal of Organometallic Chemistry, 2021, 946-947, 121899.	1.8	2