Prachi Rastogi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8873159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ferroelectric Gating of Narrow Band-Gap Nanocrystal Arrays with Enhanced Light–Matter Coupling. ACS Photonics, 2021, 8, 259-268.	6.6	23
2	Complex Optical Index of HgTe Nanocrystal Infrared Thin Films and Its Use for Short Wave Infrared Photodiode Design. Advanced Optical Materials, 2021, 9, 2002066.	7.3	36
3	Seeded Growth of HgTe Nanocrystals for Shape Control and Their Use in Narrow Infrared Electroluminescence. Chemistry of Materials, 2021, 33, 2054-2061.	6.7	16
4	Correlating Structure and Detection Properties in HgTe Nanocrystal Films. Nano Letters, 2021, 21, 4145-4151.	9.1	23
5	Time-Resolved Photoemission to Unveil Electronic Coupling between Absorbing and Transport Layers in a Quantum Dot-Based Solar Cell. Journal of Physical Chemistry C, 2020, 124, 23400-23409.	3.1	12
6	Electroluminescence from HgTe Nanocrystals and Its Use for Active Imaging. Nano Letters, 2020, 20, 6185-6190.	9.1	28
7	Near- to Long-Wave-Infrared Mercury Chalcogenide Nanocrystals from Liquid Mercury. Journal of Physical Chemistry C, 2020, 124, 8423-8430.	3.1	14
8	Revealing the Band Structure of FAPI Quantum Dot Film and Its Interfaces with Electron and Hole Transport Layer Using Time Resolved Photoemission. Journal of Physical Chemistry C, 2020, 124, 3873-3880.	3.1	10
9	Pushing Absorption of Perovskite Nanocrystals into the Infrared. Nano Letters, 2020, 20, 3999-4006.	9.1	18
10	Nanoplatelet-Based Light-Emitting Diode and Its Use in All-Nanocrystal LiFi-like Communication. ACS Applied Materials & Interfaces, 2020, 12, 22058-22065.	8.0	23
11	The Strong Confinement Regime in HgTe Two-Dimensional Nanoplatelets. Journal of Physical Chemistry C, 2020, 124, 23460-23468.	3.1	29
12	Azobenzenes as Light-Activable Carrier Density Switches in Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 27257-27263.	3.1	3
13	Near Unity Absorption in Nanocrystal Based Short Wave Infrared Photodetectors Using Guided Mode Resonators. ACS Photonics, 2019, 6, 2553-2561.	6.6	44
14	Enhancing the Performance of CdSe/CdS Dot-in-Rod Light-Emitting Diodes via Surface Ligand Modification. ACS Applied Materials & Interfaces, 2018, 10, 5665-5672.	8.0	55
15	Nearly Monodisperse Insulator Cs ₄ PbX ₆ (X = Cl, Br, I) Nanocrystals, Their Mixed Halide Compositions, and Their Transformation into CsPbX ₃ Nanocrystals. Nano Letters, 2017, 17, 1924-1930.	9.1	488
16	From CsPbBr ₃ Nano-Inks to Sintered CsPbBr ₃ –CsPb ₂ Br ₅ Films via Thermal Annealing: Implications on Optoelectronic Properties. Journal of Physical Chemistry C, 2017, 121, 11956-11961.	3.1	96
17	Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nature Energy, 2017, 2, .	39.5	544
18	Bright-Emitting Perovskite Films by Large-Scale Synthesis and Photoinduced Solid-State Transformation of CsPbBr ₃ Nanoplatelets. ACS Nano, 2017, 11, 10206-10213.	14.6	118

#	Article	IF	CITATIONS
19	Singleâ€Mode Lasing from Colloidal Waterâ€Soluble CdSe/CdS Quantum Dotâ€inâ€Rods. Small, 2015, 11, 1328-1334.	10.0	70
20	Competition Between Layering & Nano-clustering Of Indium Atoms On Reconstructed Si (113) 3x2 Surface. Advanced Materials Letters, 2015, 6, 690-694.	0.6	0
21	New Approach to Clean GaN Surfaces. Materials Focus, 2014, 3, 218-223.	0.4	22