Andreas Otto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8873116/publications.pdf Version: 2024-02-01

ΔΝΠΡΕΛς ΟΤΤΟ

#	Article	lF	CITATIONS
1	Surviving Serum: the Escherichia coli <i>iss</i> Gene of Extraintestinal Pathogenic E. coli Is Required for the Synthesis of Group 4 Capsule. Infection and Immunity, 2021, 89, e0031621.	2.2	9
2	A Lactococcal Phage Protein Promotes Viral Propagation and Alters the Host Proteomic Response During Infection. Viruses, 2020, 12, 797.	3.3	4
3	Sppl Forms a Membrane Protein Complex with SppA and Inhibits Its Protease Activity in Bacillus subtilis. MSphere, 2020, 5, .	2.9	3
4	Bacterioplankton reveal years-long retention of Atlantic deep-ocean water by the Tropic Seamount. Scientific Reports, 2020, 10, 4715.	3.3	8
5	Comprehensive Spectral Library from the Pathogenic Bacterium <i>Streptococcus pneumoniae</i> with Focus on Phosphoproteins. Journal of Proteome Research, 2020, 19, 1435-1446.	3.7	4
6	Toward the Quantitative Characterization of Arginine Phosphorylations in <i>Staphylococcus aureus</i> . Journal of Proteome Research, 2019, 18, 265-279.	3.7	10
7	Ariadne's Thread in the Analytical Labyrinth of Membrane Proteins: Integration of Targeted and Shotgun Proteomics for Global Absolute Quantification of Membrane Proteins. Analytical Chemistry, 2019, 91, 11972-11980.	6.5	7
8	Investigating Lactococcus lactis MG1363 Response to Phage p2 Infection at the Proteome Level. Molecular and Cellular Proteomics, 2019, 18, 704-714.	3.8	12
9	A homopolymeric adenosine tract in the promoter region of nspA influences factor H-mediated serum resistance in Neisseria meningitidis. Scientific Reports, 2019, 9, 2736.	3.3	4
10	Differential daptomycin resistance development in Staphylococcus aureus strains with active and mutated gra regulatory systems. International Journal of Medical Microbiology, 2018, 308, 335-348.	3.6	38
11	Spectral Library Based Analysis of Arginine Phosphorylations in Staphylococcus aureus. Molecular and Cellular Proteomics, 2018, 17, 335-348.	3.8	41
12	Proteomic Signatures of Clostridium difficile Stressed with Metronidazole, Vancomycin, or Fidaxomicin. Cells, 2018, 7, 213.	4.1	14
13	Iron Regulation in Clostridioides difficile. Frontiers in Microbiology, 2018, 9, 3183.	3.5	49
14	A Metabolic Labeling Strategy for Relative Protein Quantification in Clostridioides difficile. Frontiers in Microbiology, 2018, 9, 2371.	3.5	4
15	Tracking gene expression and oxidative damage of O2-stressed Clostridioides difficile by a multi-omics approach. Anaerobe, 2018, 53, 94-107.	2.1	21
16	Comparative Proteomics of Purified Pathogen Vacuoles Correlates Intracellular Replication of Legionella pneumophila with the Small GTPase Ras-related protein 1 (Rap1). Molecular and Cellular Proteomics, 2017, 16, 622-641.	3.8	54
17	Bacillus pumilus KatX2 confers enhanced hydrogen peroxide resistance to a Bacillus subtilis PkatA::katX2 mutant strain. Microbial Cell Factories, 2017, 16, 72.	4.0	2
18	Identification of new protein-coding genes with a potential role in the virulence of the plant pathogen Xanthomonas euvesicatoria. BMC Genomics, 2017, 18, 625.	2.8	13

ANDREAS OTTO

#	Article	IF	CITATIONS
19	Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11591-11596.	7.1	267
20	Impact of Moderate Temperature Changes on Neisseria meningitidis Adhesion Phenotypes and Proteome. Infection and Immunity, 2016, 84, 3484-3495.	2.2	10
21	The protein inventory of <i>Clostridium difficile</i> grown in complex and minimal medium. Proteomics - Clinical Applications, 2016, 10, 1068-1072.	1.6	36
22	Comparative proteome analysis of Actinoplanes sp. SE50/110 grown with maltose or glucose shows minor differences for acarbose biosynthesis proteins but major differences for saccharide transporters. Journal of Proteomics, 2016, 131, 140-148.	2.4	21
23	Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster. Journal of Proteomics, 2015, 125, 1-16.	2.4	17
24	A Metaproteomics Approach to Elucidate Host and Pathogen Protein Expression during Catheter-Associated Urinary Tract Infections (CAUTIs). Molecular and Cellular Proteomics, 2015, 14, 989-1008.	3.8	63
25	The phosphoproteome and its physiological dynamics in Staphylococcus aureus. International Journal of Medical Microbiology, 2014, 304, 121-132.	3.6	48
26	The Staphylococcus aureus proteome. International Journal of Medical Microbiology, 2014, 304, 110-120.	3.6	39
27	Quantitative proteomics in the field of microbiology. Proteomics, 2014, 14, 547-565.	2.2	66
28	Global proteome analysis of vancomycin stress in Staphylococcus aureus. International Journal of Medical Microbiology, 2013, 303, 624-634.	3.6	40
29	Novel Twin-Arginine Translocation Pathway-Dependent Phenotypes of <i>Bacillus subtilis</i> Unveiled by Quantitative Proteomics. Journal of Proteome Research, 2013, 12, 796-807.	3.7	26
30	Global relative and absolute quantitation in microbial proteomics. Current Opinion in Microbiology, 2012, 15, 364-372.	5.1	50
31	Analyses of Soluble and Membrane Proteomes of <i>Ralstonia eutropha</i> H16 Reveal Major Changes in the Protein Complement in Adaptation to Lithoautotrophy. Journal of Proteome Research, 2011, 10, 2767-2776.	3.7	29
32	A Comprehensive Proteomics and Transcriptomics Analysis of <i>Bacillus subtilis</i> Salt Stress Adaptation. Journal of Bacteriology, 2010, 192, 870-882.	2.2	175
33	Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis. Nature Communications, 2010, 1, 137.	12.8	188
34	A Proteomic View of an Important Human Pathogen – Towards the Quantification of the Entire Staphylococcus aureus Proteome. PLoS ONE, 2009, 4, e8176.	2.5	139
35	Monitoring of changes in the membrane proteome during stationary phase adaptation of <i>Bacillus subtilis</i> using <i>in vivo</i> labeling techniques. Proteomics, 2008, 8, 2062-2076.	2.2	55
36	Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 849, 129-140.	2.3	57

#	Article	IF	CITATIONS
37	Gel-free and Gel-based Proteomics in Bacillus subtilis. Molecular and Cellular Proteomics, 2006, 5, 1183-1192.	3.8	83