George Cotsarelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8873113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 1990, 61, 1329-1337.	28.9	2,175
2	Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells. Cell, 1989, 57, 201-209.	28.9	1,306
3	β-Catenin Controls Hair Follicle Morphogenesis and Stem Cell Differentiation in the Skin. Cell, 2001, 105, 533-545.	28.9	1,254
4	Capturing and profiling adult hair follicle stem cells. Nature Biotechnology, 2004, 22, 411-417.	17.5	1,198
5	Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Medicine, 2005, 11, 1351-1354.	30.7	1,177
6	The Biology of Hair Follicles. New England Journal of Medicine, 1999, 341, 491-497.	27.0	1,150
7	Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature, 2007, 447, 316-320.	27.8	919
8	Deletion of the Developmentally Essential Gene ATR in Adult Mice Leads to Age-Related Phenotypes and Stem Cell Loss. Cell Stem Cell, 2007, 1, 113-126.	11.1	691
9	Epithelial Stem Cells: A Folliculocentric View. Journal of Investigative Dermatology, 2006, 126, 1459-1468.	0.7	488
10	Enrichment for Living Murine Keratinocytes from the Hair Follicle Bulge with the Cell Surface Marker CD34. Journal of Investigative Dermatology, 2003, 120, 501-511.	0.7	485
11	Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation. Cell, 2017, 169, 1119-1129.e11.	28.9	477
12	Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science, 2016, 353, 179-184.	12.6	468
13	Regeneration of fat cells from myofibroblasts during wound healing. Science, 2017, 355, 748-752.	12.6	434
14	Sox9 Is Essential for Outer Root Sheath Differentiation and the Formation of the Hair Stem Cell Compartment. Current Biology, 2005, 15, 1340-1351.	3.9	366
15	Review of hair follicle dermal cells. Journal of Dermatological Science, 2010, 57, 2-11.	1.9	359
16	Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nature Communications, 2019, 10, 650.	12.8	345
17	Keratin 15 Promoter Targets Putative Epithelial Stem Cells in the Hair Follicle Bulge. Journal of Investigative Dermatology, 2003, 121, 963-968.	0.7	335
18	The longest telomeres: a general signature of adult stem cell compartments. Genes and Development, 2008, 22, 654-667.	5.9	299

GEORGE COTSARELIS

#	Article	IF	CITATIONS
19	Fgf9 from dermal γδT cells induces hair follicle neogenesis after wounding. Nature Medicine, 2013, 19, 916-923.	30.7	272
20	Timing of expression of the core clock gene <i>Bmal1</i> influences its effects on aging and survival. Science Translational Medicine, 2016, 8, 324ra16.	12.4	249
21	Hedgehog stimulates hair follicle neogenesis by creating inductive dermis during murine skin wound healing. Nature Communications, 2018, 9, 4903.	12.8	182
22	Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells. Nature Communications, 2014, 5, 3071.	12.8	96
23	Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors. Nature Communications, 2014, 5, 5807.	12.8	61
24	A patient-derived-xenograft platform to study BRCA-deficient ovarian cancers. JCI Insight, 2017, 2, e89760.	5.0	55
25	Hypoxia-Inducible Factors Regulate Filaggrin Expression and Epidermal Barrier Function. Journal of Investigative Dermatology, 2015, 135, 454-461.	0.7	41
26	Thymic stromal lymphopoietin induces adipose loss through sebum hypersecretion. Science, 2021, 373, .	12.6	36
27	CD133 Expression Correlates with Membrane Beta-Catenin and E-Cadherin Loss from Human Hair Follicle Placodes during Morphogenesis. Journal of Investigative Dermatology, 2015, 135, 45-55.	0.7	29
28	Vismodegib Resistance in Basal Cell Carcinoma: Not a Smooth Fit. Cancer Cell, 2015, 27, 315-316.	16.8	21
29	A Global eDelphi Exercise to Identify Core Domains and Domain Items for the Development of a Global Registry of Alopecia Areata Disease Severity and Treatment Safety (GRASS). JAMA Dermatology, 2021, 157, 439.	4.1	13
30	Cellular Memories — More Than Skin Deep. New England Journal of Medicine, 2022, 386, 793-795.	27.0	4
31	Regenerative medicine could pave the way to treating baldness. Nature, 2020, 582, 343-344.	27.8	2
32	Fibrotic trochanters: A potential mechanism for stem cell depletion in scarring alopecias. Journal of Cutaneous Pathology, 2021, 48, 458-460.	1.3	0