List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8873079/publications.pdf Version: 2024-02-01

IANET PURIN

#	Article	IF	CITATIONS
1	Exercise to Mend Aged-tissue Crosstalk in Bone Targeting Osteoporosis & Osteoarthritis. Seminars in Cell and Developmental Biology, 2022, 123, 22-35.	5.0	14
2	G protein-coupled receptor kinase 3 modulates mesenchymal stem cell proliferation and differentiation through sphingosine-1-phosphate receptor regulation. Stem Cell Research and Therapy, 2022, 13, 37.	5.5	1
3	Architectural control of mesenchymal stem cell phenotype through nuclear actin. Nucleus, 2022, 13, 35-48.	2.2	5
4	Mechanically Induced Nuclear Shuttling of β-Catenin Requires Co-transfer of Actin. Stem Cells, 2022, 40, 423-434.	3.2	7
5	Lowâ€Đose Tamoxifen Induces Significant Bone Formation in Mice. JBMR Plus, 2021, 5, e10450.	2.7	11
6	Lumbar Scoliosis in Postmenopausal Women Increases with Age but is not Associated with Osteoporosis. Journal of the Endocrine Society, 2021, 5, bvab018.	0.2	1
7	Lamin A/C Is Dispensable to Mechanical Repression of Adipogenesis. International Journal of Molecular Sciences, 2021, 22, 6580.	4.1	10
8	Exercise Increases Bone in SEIPIN Deficient Lipodystrophy, Despite Low Marrow Adiposity. Frontiers in Endocrinology, 2021, 12, 782194.	3.5	2
9	Exercise Degrades Bone in Caloric Restriction, Despite Suppression of Marrow Adipose Tissue (MAT). Journal of Bone and Mineral Research, 2020, 35, 106-115.	2.8	23
10	Knockdown of formin mDia2 alters lamin B1 levels and increases osteogenesis in stem cells. Stem Cells, 2020, 38, 102-117.	3.2	13
11	Mechanisms of exercise effects on bone quantity and quality. , 2020, , 1759-1784.		2
12	Effects of Iron Isomaltoside vs Ferric Carboxymaltose on Hypophosphatemia in Iron-Deficiency Anemia. JAMA - Journal of the American Medical Association, 2020, 323, 432.	7.4	162
13	βâ€Catenin Preserves the Stem State of Murine Bone Marrow Stromal Cells Through Activation of EZH2. Journal of Bone and Mineral Research, 2020, 35, 1149-1162.	2.8	42
14	Persistently Elevated PTH After Parathyroidectomy at One Year: Experience in a Tertiary Referral Center. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4473-4480.	3.6	30
15	Gene regulation through dynamic actin control of nuclear structure. Experimental Biology and Medicine, 2019, 244, 1345-1353.	2.4	21
16	Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity. Nature Reviews Endocrinology, 2019, 15, 339-355.	9.6	140
17	Marrow Adiposity and Hematopoiesis in Aging and Obesity: Exercise as an Intervention. Current Osteoporosis Reports, 2018, 16, 105-115.	3.6	23
18	Sun-mediated mechanical LINC between nucleus and cytoskeleton regulates βcatenin nuclear access. Journal of Biomechanics, 2018, 74, 32-40.	2.1	60

#	Article	IF	CITATIONS
19	Enucleated cells reveal differential roles of the nucleus in cell migration, polarity, and mechanotransduction. Journal of Cell Biology, 2018, 217, 895-914.	5.2	93
20	Osteogenic Stimulation of Human Adipose-Derived Mesenchymal Stem Cells Using a Fungal Metabolite That Suppresses the Polycomb Group Protein EZH2. Stem Cells Translational Medicine, 2018, 7, 197-209.	3.3	32
21	LARG CEF and ARHGAP18 orchestrate RhoA activity to control mesenchymal stem cell lineage. Bone, 2018, 107, 172-180.	2.9	31
22	Physical Signals May Affect Mesenchymal Stem Cell Differentiation via Epigenetic Controls. Exercise and Sport Sciences Reviews, 2018, 46, 42-47.	3.0	17
23	Validation of Osteogenic Properties of Cytochalasin D by High-Resolution RNA-Sequencing in Mesenchymal Stem Cells Derived from Bone Marrow and Adipose Tissues. Stem Cells and Development, 2018, 27, 1136-1145.	2.1	24
24	Exercise Decreases Marrow Adipose Tissue Through ß-Oxidation in Obese Running Mice. Journal of Bone and Mineral Research, 2017, 32, 1692-1702.	2.8	78
25	Intranuclear Actin Structure Modulates Mesenchymal Stem Cell Differentiation. Stem Cells, 2017, 35, 1624-1635.	3.2	63
26	Incorporating Refractory Period in Mechanical Stimulation Mitigates Obesityâ€Induced Adipose Tissue Dysfunction in Adult Mice. Obesity, 2017, 25, 1745-1753.	3.0	18
27	Actin up in the Nucleus: Regulation of Actin Structures Modulates Mesenchymal Stem Cell Differentiation. Transactions of the American Clinical and Climatological Association, 2017, 128, 180-192.	0.5	5
28	Exercise Increases and Browns Muscle Lipid in High-Fat Diet-Fed Mice. Frontiers in Endocrinology, 2016, 7, 80.	3.5	26
29	Concise Review: Plasma and Nuclear Membranes Convey Mechanical Information to Regulate Mesenchymal Stem Cell Lineage. Stem Cells, 2016, 34, 1455-1463.	3.2	32
30	Epigenetic Plasticity Drives Adipogenic and Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells. Journal of Biological Chemistry, 2016, 291, 17829-17847.	3.4	150
31	Cytoskeletal Configuration Modulates Mechanically Induced Changes in Mesenchymal Stem Cell Osteogenesis, Morphology, and Stiffness. Scientific Reports, 2016, 6, 34791.	3.3	36
32	Cell Mechanosensitivity Is Enabled by the LINC Nuclear Complex. Current Molecular Biology Reports, 2016, 2, 36-47.	1.6	41
33	Low intensity vibration mitigates tumor progression and protects bone quantity and quality in a murine model of myeloma. Bone, 2016, 90, 69-79.	2.9	38
34	Osteocyte specific responses to soluble and mechanical stimuli in a stem cell derived culture model. Scientific Reports, 2015, 5, 11049.	3.3	42
35	Intranuclear Actin Regulates Osteogenesis. Stem Cells, 2015, 33, 3065-3076.	3.2	100
36	Cell Mechanosensitivity to Extremely Low-Magnitude Signals Is Enabled by a LINCed Nucleus. Stem Cells, 2015, 33, 2063-2076.	3.2	122

#	Article	IF	CITATIONS
37	Exercise Regulation of Marrow Fat in the Setting of PPARÎ ³ Agonist Treatment in Female C57BL/6 Mice. Endocrinology, 2015, 156, 2753-2761.	2.8	52
38	Gap Junctional Communication in Osteocytes Is Amplified by Low Intensity Vibrations In Vitro. PLoS ONE, 2014, 9, e90840.	2.5	49
39	Vibration therapy. Current Opinion in Endocrinology, Diabetes and Obesity, 2014, 21, 447-453.	2.3	54
40	mTORC2 Regulates Mechanically Induced Cytoskeletal Reorganization and Lineage Selection in Marrow-Derived Mesenchymal Stem Cells. Journal of Bone and Mineral Research, 2014, 29, 78-89.	2.8	134
41	Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone, 2014, 64, 39-46.	2.9	124
42	Mechanically activated fyn utilizes mTORC2 to regulate RhoA and adipogenesis in mesenchymal stem cells. Stem Cells, 2013, 31, 2528-2537.	3.2	64
43	Prevention of Osteoporosis by Physical Signals. , 2013, , 517-535.		1
44	Mechanical input restrains PPARÎ ³ 2 expression and action to preserve mesenchymal stem cell multipotentiality. Bone, 2013, 52, 454-464.	2.9	38
45	Rib Fractures and Death from Deletion of Osteoblast βcatenin in Adult Mice Is Rescued by Corticosteroids. PLoS ONE, 2013, 8, e55757.	2.5	4
46	Low magnitude mechanical signals mitigate osteopenia without compromising longevity in an aged murine model of spontaneous granulosa cell ovarian cancer. Bone, 2012, 51, 570-577.	2.9	38
47	Mechanical regulation of signaling pathways in bone. Gene, 2012, 503, 179-193.	2.2	334
48	Mechanical Strain Downregulates C/EBPβ in MSC and Decreases Endoplasmic Reticulum Stress. PLoS ONE, 2012, 7, e51613.	2.5	29
49	Mechanically Induced Focal Adhesion Assembly Amplifies Anti-Adipogenic Pathways in Mesenchymal Stem Cells. Stem Cells, 2011, 29, 1829-1836.	3.2	71
50	Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. Journal of Biomechanics, 2011, 44, 593-599.	2.1	140
51	Mechanical Regulation of Glycogen Synthase Kinase 3β (GSK3β) in Mesenchymal Stem Cells Is Dependent on Akt Protein Serine 473 Phosphorylation via mTORC2 Protein. Journal of Biological Chemistry, 2011, 286, 39450-39456.	3.4	82
52	β atenin—A supporting role in the skeleton. Journal of Cellular Biochemistry, 2010, 110, 545-553.	2.6	69
53	Indomethacin promotes adipogenesis of mesenchymal stem cells through a cyclooxygenase independent mechanism. Journal of Cellular Biochemistry, 2010, 111, 1042-1050.	2.6	56
54	Mechanical activation of βâ€catenin regulates phenotype in adult murine marrowâ€derived mesenchymal stem cells. Journal of Orthopaedic Research, 2010, 28, 1531-1538.	2.3	71

#	Article	IF	CITATIONS
55	Stand UP!. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 2050-2053.	3.6	6
56	Mechanical signals as anabolic agents in bone. Nature Reviews Rheumatology, 2010, 6, 50-59.	8.0	368
57	Mechanical Loading Regulates NFATc1 and β-Catenin Signaling through a GSK3β Control Node. Journal of Biological Chemistry, 2009, 284, 34607-34617.	3.4	125
58	Functional Adaptation to Loading of a Single Bone Is Neuronally Regulated and Involves Multiple Bones. Journal of Bone and Mineral Research, 2008, 23, 1369-1371.	2.8	36
59	β-Catenin Levels Influence Rapid Mechanical Responses in Osteoblasts. Journal of Biological Chemistry, 2008, 283, 29196-29205.	3.4	138
60	Mechanical Strain Inhibits Adipogenesis in Mesenchymal Stem Cells by Stimulating a Durable β-Catenin Signal. Endocrinology, 2008, 149, 6065-6075.	2.8	257
61	Mechanisms of Exercise Effects on Bone Quantity and Quality. , 2008, , 1819-1837.		0
62	Caveolin-1 Knockout Mice Have Increased Bone Size and Stiffness. Journal of Bone and Mineral Research, 2007, 22, 1408-1418.	2.8	70
63	Molecular pathways mediating mechanical signaling in bone. Gene, 2006, 367, 1-16.	2.2	406
64	Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. Journal of Cellular Physiology, 2006, 207, 454-460.	4.1	62
65	Activation of Extracellular Signal-Regulated Kinase Is Involved in Mechanical Strain Inhibition of RANKL Expression in Bone Stromal Cells. Journal of Bone and Mineral Research, 2002, 17, 1452-1460.	2.8	112
66	Mechanical strain inhibits expression of osteoclast differentiation factor by murine stromal cells. American Journal of Physiology - Cell Physiology, 2000, 278, C1126-C1132.	4.6	123
67	Macrophage Colony Stimulating Factor Down-Regulates MCSF-Receptor Expression and Entry of Progenitors into the Osteoclast Lineage. Journal of Bone and Mineral Research, 1997, 12, 1387-1395.	2.8	43
68	Formation of osteoclast-like cells is suppressed by low frequency, low intensity electric fields. Journal of Orthopaedic Research, 1996, 14, 7-15.	2.3	48
69	Ketoconazole and phorbol myristate acetate regulate osteoclast precursor fusion in primary murine marrow culture. Journal of Bone and Mineral Research, 1996, 11, 1274-1280.	2.8	14
70	cAMP promotion of osteoclast-like cell development from mouse bone marrow cells requires a permissive action of 1,25-(OH)2D3. Journal of Bone and Mineral Research, 1992, 7, 611-617.	2.8	18
71	Regulation of Complement 5a Receptor Expression in U937 Cells by Phorbol Ester. Journal of Leukocyte Biology, 1991, 50, 502-508.	3.3	15
72	Expression of C5a Anaphylatoxin Receptor in Monoblastic Cells Involves Facilitation of an Adenosine 3′,5′-Monophosphate-Dependent Process*. Endocrinology, 1988, 123, 2424-2431.	2.8	9