Gopal C Kundu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8872870/publications.pdf

Version: 2024-02-01

53660 62479 6,719 105 45 80 citations h-index g-index papers 109 109 109 9327 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CRISPR based therapeutics: a new paradigm in cancer precision medicine. Molecular Cancer, 2022, 21, 85.	7.9	15
2	Tumor-associated macrophage derived IL-6 enriches cancer stem cell population and promotes breast tumor progression via Stat-3 pathway. Cancer Cell International, 2022, 22, 122.	1.8	55
3	Antiproliferative and apoptotic potential of methotrexate lipid nanoparticles in a murine breast cancer model. Nanomedicine, 2022, 17, 753-764.	1.7	3
4	Continuous flow fabrication of Fmoc-cysteine based nanobowl infused core–shell like microstructures for pH switchable on-demand anti-cancer drug delivery. Biomaterials Science, 2021, 9, 942-959.	2.6	9
5	<i>N</i> â€arachidonoyl dopamine inhibits epithelial–mesenchymal transition of breast cancer cells through ERK signaling and decreasing the cellular cholesterol. Journal of Biochemical and Molecular Toxicology, 2021, 35, e22693.	1.4	15
6	Tumor-derived osteopontin drives the resident fibroblast to myofibroblast differentiation through Twist1 to promote breast cancer progression. Oncogene, 2021, 40, 2002-2017.	2.6	32
7	Structural Constraint of Osteopontin Facilitates Efficient Binding to CD44. Biomolecules, 2021, 11, 813.	1.8	6
8	SARS-CoV-2: Origin, Pathogenesis and Therapeutic Interventions. Coronaviruses, 2021, 2, .	0.2	2
9	Polyherbal formulation Anoacâ€'H suppresses theÂexpression of RANTES and VEGF for theÂmanagement of bleeding hemorrhoids and fistula. Molecular Medicine Reports, 2021, 24, .	1.1	8
10	Induction of monoamine oxidase A-mediated oxidative stress and impairment of NRF2-antioxidant defence response by polyphenol-rich fraction of Bergenia ligulata sensitizes prostate cancer cells in vitro and in vivo. Free Radical Biology and Medicine, 2021, 172, 136-151.	1.3	19
11	Ultrahigh Penetration and Retention of Graphene Quantum Dot Mesoporous Silica Nanohybrids for Image Guided Tumor Regression. ACS Applied Bio Materials, 2021, 4, 1693-1703.	2.3	14
12	Osteopontin Signaling in Shaping Tumor Microenvironment Conducive to Malignant Progression. Advances in Experimental Medicine and Biology, 2021, 1329, 419-441.	0.8	10
13	MiRNA-146a/AKT/ \hat{l}^2 -Catenin Activation Regulates Cancer Stem Cell Phenotype in Oral Squamous Cell Carcinoma by Targeting CD24. Frontiers in Oncology, 2021, 11, 651692.	1.3	14
14	Herbal medicine AnoSpray suppresses proinflammatory cytokines COXâ€'2 and RANTES in the management of hemorrhoids, acute anal fissures and perineal wounds. Experimental and Therapeutic Medicine, 2021, 23, 86.	0.8	4
15	Non-coding RNAs as potential therapeutic targets in breast cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194378.	0.9	68
16	Folated curcumin-gold nanoformulations: A nanotherapeutic strategy for breast cancer therapy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 050802.	0.6	3
17	Liposomal nanotheranostics for multimode targeted in vivo bioimaging and nearâ€infrared light mediated cancer therapy. Communications Biology, 2020, 3, 284.	2.0	46
18	Desialylation of Sonic-Hedgehog by Neu2 Inhibits Its Association with Patched1 Reducing Stemness-Like Properties in Pancreatic Cancer Sphere-forming Cells. Cells, 2020, 9, 1512.	1.8	8

#	Article	IF	CITATIONS
19	Extracellular volatilomic alterations induced by hypoxia in breast cancer cells. Metabolomics, 2020, 16, 21.	1.4	4
20	RGD functionalized chitosan nanoparticle mediated targeted delivery of raloxifene selectively suppresses angiogenesis and tumor growth in breast cancer. Nanoscale, 2020, 12, 10664-10684.	2.8	68
21	Graphene Oxide Supported Liposomes as Red Emissive Theranostics for Phototriggered Tissue Visualization and Tumor Regression. ACS Applied Bio Materials, 2019, 2, 3312-3320.	2.3	30
22	<p>Functional design of pH-responsive folate-targeted polymer-coated gold nanoparticles for drug delivery and in vivo therapy in breast cancer</p> . International Journal of Nanomedicine, 2019, Volume 14, 8285-8302.	3.3	72
23	In Vivo Wound Healing Performance of Halloysite Clay and Gentamicin-Incorporated Cellulose Ether-PVA Electrospun Nanofiber Mats. ACS Applied Bio Materials, 2019, 2, 4324-4334.	2.3	48
24	Curcuma zedoaria (christm.) roscoe inhibits proliferation of MDA-MB231 cells via caspase-cascade apoptosis. Oriental Pharmacy and Experimental Medicine, 2019, 19, 235-241.	1.2	5
25	Breast cancer stem cells: Biology and therapeutic implications. International Journal of Biochemistry and Cell Biology, 2019, 107, 38-52.	1.2	115
26	A biodegradable fluorescent nanohybrid for photo-driven tumor diagnosis and tumor growth inhibition. Nanoscale, 2018, 10, 19082-19091.	2.8	30
27	Impact of semaphorin expression on prognostic characteristics in breast cancer. Breast Cancer: Targets and Therapy, 2018, Volume 10, 79-88.	1.0	20
28	The Biology and Therapeutic Implications of Tumor Dormancy and Reactivation. Frontiers in Oncology, 2018, 8, 72.	1.3	47
29	Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Molecular Cancer, 2018, 17, 34.	7.9	221
30	Epoxyazadiradione suppresses breast tumor growth through mitochondrial depolarization and caspase-dependent apoptosis by targeting PI3K/Akt pathway. BMC Cancer, 2018, 18, 52.	1.1	46
31	Therapeutic implications of cellular and molecular biology of cancer stem cells in melanoma. Molecular Cancer, 2017, 16, 7.	7.9	54
32	MiRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2. Cell Death and Disease, 2017, 8, e2706-e2706.	2.7	131
33	p53 gainâ€ofâ€function mutations increase Cdc7â€dependent replication initiation. EMBO Reports, 2017, 18, 2030-2050.	2.0	34
34	Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells. International Journal of Nanomedicine, 2017, Volume 12, 6841-6855.	3.3	128
35	Notch1-MAPK Signaling Axis is Essential in CD133+ Melanoma Initiating Cells. Journal of Cell Signaling, 2017, 02, .	0.3	0
36	Notch1-MAPK Signaling Axis Regulates CD133+ Cancer Stem Cell-Mediated Melanoma Growth and Angiogenesis. Journal of Investigative Dermatology, 2016, 136, 2462-2474.	0.3	61

#	Article	IF	Citations
37	Ascochlorin Enhances the Sensitivity of Doxorubicin Leading to the Reversal of Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma. Molecular Cancer Therapeutics, 2016, 15, 2966-2976.	1.9	86
38	Non-migratory tumorigenic intrinsic cancer stem cells ensure breast cancer metastasis by generation of CXCR4+ migrating cancer stem cells. Oncogene, 2016, 35, 4937-4948.	2.6	52
39	Trichothecin from Endophytic Fungus Trichothecium sp. and its Anticancer Effect on Murine Melanoma and Breast Cancer Cell Lines. Current Biochemical Engineering, 2015, 2, 73-80.	1.3	3
40	Diosgenin Functionalized Iron Oxide Nanoparticles as Novel Nanomaterial Against Breast Cancer. Journal of Nanoscience and Nanotechnology, 2015, 15, 9464-9472.	0.9	78
41	Role of Osteopontin in Tumor Microenvironment: A New Paradigm in Cancer Therapy. , 2015, , 113-125.		4
42	The potential of class 3 semaphorins as both targets and therapeutics in cancer. Expert Opinion on Therapeutic Targets, 2015, 19, 427-442.	1.5	10
43	Cross-talk between Endoplasmic Reticulum (ER) Stress and the MEK/ERK Pathway Potentiates Apoptosis in Human Triple Negative Breast Carcinoma Cells. Journal of Biological Chemistry, 2015, 290, 3936-3949.	1.6	25
44	Chronic exposure to chewing tobacco selects for overexpression of stearoyl-CoA desaturase in normal oral keratinocytes. Cancer Biology and Therapy, 2015, 16, 1593-1603.	1.5	31
45	Semaphorin 3A upregulates FOXO 3a-dependent MelCAM expression leading to attenuation of breast tumor growth and angiogenesis. Oncogene, 2015, 34, 1584-1595.	2.6	52
46	Comparative Characterization of Cardiac Development Specific microRNAs: Fetal Regulators for Future. PLoS ONE, 2015, 10, e0139359.	1.1	11
47	Biocompatible Amphiphilic Pentablock Copolymeric Nanoparticles for Anti-Cancer Drug Delivery. Journal of Biomedical Nanotechnology, 2014, 10, 109-119.	0.5	27
48	Gold Nanocages as Effective Photothermal Transducers in Killing Highly Tumorigenic Cancer Cells. Particle and Particle Systems Characterization, 2014, 31, 398-405.	1.2	28
49	Hypoxia-driven osteopontin contributes to breast tumor growth through modulation of HIF1 \hat{l} ±-mediated VEGF-dependent angiogenesis. Oncogene, 2014, 33, 2053-2064.	2.6	110
50	Osteopontin as a therapeutic target for cancer. Expert Opinion on Therapeutic Targets, 2014, 18, 883-895.	1.5	116
51	Isolation, purification and characterization of Trichothecinol-A produced by endophytic fungus Trichotheciumsp. and its antifungal, anticancer and antimetastatic activities. Sustainable Chemical Processes, 2014, 2, .	2.3	18
52	Osteopontin signaling upregulates cyclooxygenase-2 expression in tumor-associated macrophages leading to enhanced angiogenesis and melanoma growth via α9β1 integrin. Oncogene, 2014, 33, 2295-2306.	2.6	119
53	Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. International Journal of Nanomedicine, 2014, 9, 2635.	3.3	127
54	Modified dipeptide-based nanoparticles: vehicles for targeted tumor drug delivery. Nanomedicine, 2013, 8, 1927-1942.	1.7	32

#	Article	IF	CITATIONS
55	One-Pot Fluorescent Labeling Protocol for Complex Hydroxylated Bioactive Natural Products. Journal of Organic Chemistry, 2013, 78, 10192-10202.	1.7	8
56	Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 114, 144-147.	2.0	174
57	Association of osteopontin and cyclooxygenase-2 expression with breast cancer subtypes and their use as potential biomarkers. Oncology Letters, 2013, 6, 1559-1564.	0.8	28
58	Functional Characterization of Stromal Osteopontin in Melanoma Progression and Metastasis. PLoS ONE, 2013, 8, e69116.	1.1	38
59	Semaphorin 3A Suppresses Tumor Growth and Metastasis in Mice Melanoma Model. PLoS ONE, 2012, 7, e33633.	1.1	73
60	Osteopontin: a potentially important therapeutic target in cancer. Expert Opinion on Therapeutic Targets, 2011, 15, 1113-1126.	1.5	65
61	Status of research on matrix metalloproteinases (MMPs) in India. Expert Opinion on Therapeutic Targets, 2011, 15, 671-675.	1.5	2
62	Hyaluronan-binding protein 1 (HABP1/p32/gC1qR) induces melanoma cell migration and tumor growth by NF-kappa B dependent MMP-2 activation through integrin $\hat{l}\pm v\hat{l}^2$ 3 interaction. Cellular Signalling, 2011, 23, 1563-1577.	1.7	50
63	Quercetin and sulforaphane in combination suppress the progression of melanoma through the down-regulation of matrix metalloproteinase-9. Experimental and Therapeutic Medicine, 2010, 1, 915-920.	0.8	41
64	Alcohol, Signaling, and ECM Turnover. Alcoholism: Clinical and Experimental Research, 2010, 34, 4-18.	1.4	33
65	Activation of JAK2/STAT3 signaling by osteopontin promotes tumor growth in human breast cancer cells. Carcinogenesis, 2010, 31, 192-200.	1.3	119
66	p38 Kinase Is Crucial for Osteopontin-Induced Furin Expression That Supports Cervical Cancer Progression. Cancer Research, 2010, 70, 10381-10391.	0.4	71
67	Osteopontin selectively regulates p70S6K/mTOR phosphorylation leading to NF- \hat{I}^2 B dependent AP-1-mediated ICAM-1 expression in breast cancer cells. Molecular Cancer, 2010, 9, 101.	7.9	70
68	Transcriptional regulation of human osteopontin promoter by histone deacetylase inhibitor, trichostatin A in cervical cancer cells. Molecular Cancer, 2010, 9, 178.	7.9	47
69	Isolation, Structure, and Functional Elucidation of a Modified Pentapeptide, Cysteine Protease Inhibitor (CPI-2081) from <i>Streptomyces Species</i> 2081 that Exhibit Inhibitory Effect on Cancer Cell Migration. Journal of Medicinal Chemistry, 2010, 53, 5121-5128.	2.9	11
70	Downâ€regulation of osteopontin attenuates breast tumour progression ⟨i⟩in vivo⟨/i⟩. Journal of Cellular and Molecular Medicine, 2008, 12, 2305-2318.	1.6	42
71	Curcumin suppresses breast tumor angiogenesis by abrogating osteopontin-induced VEGF expression. Molecular Medicine Reports, 2008, 1, 641-6.	1.1	46
72	Prostaglandin E2 Regulates Tumor Angiogenesis in Prostate Cancer. Cancer Research, 2008, 68, 7750-7759.	0.4	149

#	Article	IF	CITATIONS
73	Osteopontin Promotes Vascular Endothelial Growth Factor–Dependent Breast Tumor Growth and Angiogenesis via Autocrine and Paracrine Mechanisms. Cancer Research, 2008, 68, 152-161.	0.4	248
74	Osteopontin: an emerging therapeutic target for anticancer therapy. Expert Opinion on Therapeutic Targets, 2007, 11, 81-90.	1.5	43
75	Osteopontin stimulates melanoma growth and lung metastasis through NIK/MEKK1-dependent MMP-9 activation pathways. Oncology Reports, 2007, 18, 909-15.	1.2	46
76	Osteopontin: role in cell signaling and cancer progression. Trends in Cell Biology, 2006, 16, 79-87.	3. 6	653
77	The Multifaceted Roles of Osteopontin in Cell Signaling, Tumor Progression and Angiogenesis. Current Molecular Medicine, 2006, 6, 819-830.	0.6	126
78	Hypoxia Regulates Cross-talk between Syk and Lck Leading to Breast Cancer Progression and Angiogenesis. Journal of Biological Chemistry, 2006, 281, 11322-11331.	1.6	57
79	The Crucial Role of Cyclooxygenase-2 in Osteopontin-Induced Protein Kinase C α/c-Src/lκB Kinase α/β–Dependent Prostate Tumor Progression and Angiogenesis. Cancer Research, 2006, 66, 6638-6648.	0.4	80
80	Osteopontin: It's Role in Regulation of Cell Motility and Nuclear Factor κB-mediated Urokinase Type Plasminogen Activator Expression. IUBMB Life, 2005, 57, 441-447.	1.5	75
81	JNK1 Differentially Regulates Osteopontin-induced Nuclear Factorinducing Kinase/MEKK1-dependent Activating Protein-1-mediated Promatrix Metalloproteinase-9 Activation. Journal of Biological Chemistry, 2005, 280, 19381-19392.	1.6	42
82	Tyrosine Kinase, p56 -induced Cell Motility, and Urokinase-type Plasminogen Activator Secretion Involve Activation of Epidermal Growth Factor Receptor/Extracellular Signal Regulated Kinase Pathways. Journal of Biological Chemistry, 2004, 279, 9733-9742.	1.6	22
83	Nuclear Factor-inducing Kinase Plays a Crucial Role in Osteopontin-induced MAPK/IκBα Kinase-dependent Nuclear Factor κB-mediated Promatrix Metalloproteinase-9 Activation. Journal of Biological Chemistry, 2004, 279, 38921-38935.	1.6	160
84	Osteopontin Induces AP-1-mediated Secretion of Urokinase-type Plasminogen Activator through c-Src-dependent Epidermal Growth Factor Receptor Transactivation in Breast Cancer Cells. Journal of Biological Chemistry, 2004, 279, 11051-11064.	1.6	93
85	Antimelanomal activity of the copper(II) complexes of 1-substituted 5-amino-imidazole ligands against B16F10 mouse melanoma cells. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2877-2882.	1.0	5
86	Syk, a Protein-tyrosine Kinase, Suppresses the Cell Motility and Nuclear Factor κB-mediated Secretion of Urokinase Type Plasminogen Activator by Inhibiting the Phosphatidylinositol 3′-Kinase Activity in Breast Cancer Cells. Journal of Biological Chemistry, 2003, 278, 6209-6221.	1.6	66
87	Hydrogen Peroxide Activates NF-l [°] B through Tyrosine Phosphorylation of ll [°] Bl [°] ± and Serine Phosphorylation of p65. Journal of Biological Chemistry, 2003, 278, 24233-24241.	1.6	424
88	Osteopontin Stimulates Cell Motility and Nuclear Factor κB-mediated Secretion of Urokinase Type Plasminogen Activator through Phosphatidylinositol 3-Kinase/Akt Signaling Pathways in Breast Cancer Cells. Journal of Biological Chemistry, 2003, 278, 28593-28606.	1.6	144
89	Tyrosine Kinase p56 Regulates Cell Motility and Nuclear Factor \hat{I}^pB -mediated Secretion of Urokinase Type Plasminogen Activator through Tyrosine Phosphorylation of $\hat{I}^pB\hat{I}^{\pm}$ following Hypoxia/Reoxygenation. Journal of Biological Chemistry, 2003, 278, 52598-52612.	1.6	46
90	Osteopontin Induces Nuclear Factor κB-mediated Promatrix Metalloproteinase-2 Activation through IκBα/IKK Signaling Pathways, and Curcumin (Diferulolylmethane) Down-regulates These Pathways. Journal of Biological Chemistry, 2003, 278, 14487-14497.	1.6	220

#	Article	IF	CITATIONS
91	Osteopontin Stimulates Tumor Growth and Activation of Promatrix Metalloproteinase-2 through Nuclear Factor-κB-mediated Induction of Membrane Type 1 Matrix Metalloproteinase in Murine Melanoma Cells. Journal of Biological Chemistry, 2001, 276, 44926-44935.	1.6	225
92	Insight into the Physiological Function(s) of Uteroglobin by Geneâ€Knockout and Antisenseâ€Transgenic Approaches. Annals of the New York Academy of Sciences, 2000, 923, 210-233.	1.8	19
93	Uteroglobin Binding Proteins: Regulation of Cellular Motility and Invasion in Normal and Cancer Cells. Annals of the New York Academy of Sciences, 2000, 923, 234-248.	1.8	11
94	Amino Acid Residues in αâ€Helixâ€3 of Human Uteroglobin Are Critical for Its Phospholipase A ₂ Inhibitory Activity. Annals of the New York Academy of Sciences, 2000, 923, 307-311.	1.8	5
95	Uteroglobin is essential in preventing immunoglobulin A nephropathy in mice. Nature Medicine, 1999, 5, 1018-1025.	15.2	86
96	Uteroglobin (UG) Suppresses Extracellular Matrix Invasion by Normal and Cancer Cells That Express the High Affinity UG-binding Proteins. Journal of Biological Chemistry, 1998, 273, 22819-22824.	1.6	40
97	The Amino-terminal Region of the Luteinizing Hormone/Choriogonadotropin Receptor Contacts Both Subunits of Human Choriogonadotropin. Journal of Biological Chemistry, 1998, 273, 13841-13847.	1.6	18
98	Altered Sialylation of Osteopontin Prevents Its Receptor-Mediated Binding on the Surface of Oncogenically Transformed tsB77 Cellsâ€. Biochemistry, 1997, 36, 5729-5738.	1.2	41
99	Severe Fibronectin-Deposit Renal Glomerular Disease in Mice Lacking Uteroglobin. Science, 1997, 276, 1408-1412.	6.0	120
100	Evidence That Porcine Pancreatic Phospholipase A2 via Its High Affinity Receptor Stimulates Extracellular Matrix Invasion by Normal and Cancer Cells. Journal of Biological Chemistry, 1997, 272, 2346-2353.	1.6	92
101	Photoaffinity Labeling of the Lutropin Receptor with Synthetic Peptide for Carboxyl Terminus of the Human Choriogonadotropin \hat{I}^3 Subunit. Journal of Biological Chemistry, 1996, 271, 11063-11066.	1.6	9
102	The alkylating properties of chlorambucil. Pharmacology Biochemistry and Behavior, 1994, 49, 621-624.	1.3	21
103	Endothelinâ€converting enzyme: the binding of metal ions. International Journal of Peptide and Protein Research, 1993, 42, 64-67.	0.1	6
104	Identification of endothelin converting enzyme in bovine lung membranes using a new fluorogenic substrate. Life Sciences, 1992, 50, 965-970.	2.0	15
105	Osteopontin stimulates melanoma growth and lung metastasis through NIK/MEKK1-dependent MMP-9 activation pathways. Oncology Reports, 0, , .	1.2	16