
Guillaume habert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8872570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An environmental evaluation of geopolymer based concrete production: reviewing current research trends. Journal of Cleaner Production, 2011, 19, 1229-1238.	4.6	895
2	Vision of 3D printing with concrete — Technical, economic and environmental potentials. Cement and Concrete Research, 2018, 112, 25-36.	4.6	553
3	Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. Journal of Cleaner Production, 2010, 18, 478-485.	4.6	492
4	Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth & Environment, 2020, 1, 559-573.	12.2	483
5	Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation. Applied Energy, 2020, 258, 114107.	5.1	457
6	LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resources, Conservation and Recycling, 2010, 54, 1231-1240.	5.3	387
7	Productivity of digital fabrication in construction: Cost and time analysis of a robotically built wall. Automation in Construction, 2018, 92, 297-311.	4.8	263
8	Cement production technology improvement compared to factor 4 objectives. Cement and Concrete Research, 2010, 40, 820-826.	4.6	227
9	Recent update on the environmental impact of geopolymers. RILEM Technical Letters, 0, 1, 17-23.	0.0	219
10	LCA and BIM: Visualization of environmental potentials in building construction at early design stages. Building and Environment, 2018, 140, 153-161.	3.0	208
11	Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics, 2011, 500, 20-33.	0.9	203
12	Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba. Journal of Cleaner Production, 2016, 124, 361-369.	4.6	201
13	Study of two concrete mix-design strategies to reach carbon mitigation objectives. Cement and Concrete Composites, 2009, 31, 397-402.	4.6	162
14	Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: The Black Mesa pluton, Henry Mountains, Utah. Tectonophysics, 2006, 428, 1-31.	0.9	159
15	Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies. Development Engineering, 2017, 2, 82-91.	1.4	159
16	Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Building and Environment, 2018, 129, 117-129.	3.0	159
17	Environmental design guidelines for digital fabrication. Journal of Cleaner Production, 2017, 142, 2780-2791.	4.6	158
18	Buildings environmental impacts' sensitivity related to LCA modelling choices of construction materials. Journal of Cleaner Production, 2017, 156, 805-816.	4.6	149

#	Article	IF	CITATIONS
19	Evaluation of BIM-based LCA results for building design. Automation in Construction, 2020, 109, 102972.	4.8	148
20	Potential benefits of digital fabrication for complex structures: Environmental assessment of a robotically fabricated concrete wall. Journal of Cleaner Production, 2017, 154, 330-340.	4.6	145
21	Carbonation kinetics of a bed of recycled concrete aggregates: A laboratory study on model materials. Cement and Concrete Research, 2013, 46, 50-65.	4.6	135
22	Influence of construction material uncertainties on residential building LCA reliability. Journal of Cleaner Production, 2017, 144, 33-47.	4.6	135
23	Flow properties of MK-based geopolymer pastes. A comparative study with standard Portland cement pastes. Soft Matter, 2014, 10, 1134.	1.2	132
24	Lowering the global warming impact of bridge rehabilitations by using Ultra High Performance Fibre Reinforced Concretes. Cement and Concrete Composites, 2013, 38, 1-11.	4.6	131
25	Continuous BIM-based assessment of embodied environmental impacts throughout the design process. Journal of Cleaner Production, 2019, 211, 941-952.	4.6	124
26	Development of a depletion indicator for natural resources used in concrete. Resources, Conservation and Recycling, 2010, 54, 364-376.	5.3	114
27	Emplacement of multiple magma sheets and wall rock deformation: Trachyte Mesa intrusion, Henry Mountains, Utah. Journal of Structural Geology, 2008, 30, 491-512.	1.0	113
28	Biogenic carbon in buildings: a critical overview of LCA methods. Buildings and Cities, 2020, 1, 504-524.	1.1	110
29	Reducing environmental impact by increasing the strength of concrete: quantification of the improvement to concrete bridges. Journal of Cleaner Production, 2012, 35, 250-262.	4.6	106
30	Effects of the secondary minerals of the natural pozzolans on their pozzolanic activity. Cement and Concrete Research, 2008, 38, 963-975.	4.6	99
31	Mechanical properties and compositional heterogeneities of fresh geopolymer pastes. Cement and Concrete Research, 2013, 48, 9-16.	4.6	98
32	Environmental impacts of bamboo-based construction materials representing global production diversity. Journal of Cleaner Production, 2014, 69, 117-127.	4.6	94
33	Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies. One Earth, 2021, 4, 1398-1411.	3.6	93
34	The impact of future scenarios on building refurbishment strategies towards plus energy buildings. Energy and Buildings, 2016, 124, 153-163.	3.1	90
35	Top-down or bottom-up? – How environmental benchmarks can support the design process. Building and Environment, 2019, 153, 148-157.	3.0	85
36	Is gravel becoming scarce? Evaluating the local criticality of construction aggregates. Resources, Conservation and Recycling, 2017, 126, 25-33.	5.3	83

#	Article	IF	CITATIONS
37	Comparison of generic and product-specific Life Cycle Assessment databases: application to construction materials used in building LCA studies. International Journal of Life Cycle Assessment, 2015, 20, 1473-1490.	2.2	82
38	Clay content of argillites: Influence on cement based mortars. Applied Clay Science, 2009, 43, 322-330.	2.6	78
39	Cement paste content and water absorption of recycled concrete coarse aggregates. Materials and Structures/Materiaux Et Constructions, 2014, 47, 1451-1465.	1.3	75
40	Retrofit as a carbon sink: The carbon storage potentials of the EU housing stock. Journal of Cleaner Production, 2019, 214, 365-376.	4.6	74
41	Review of visualising LCA results in the design process of buildings. Building and Environment, 2021, 190, 107530.	3.0	74
42	Life cycle assessment (LCA) of alkali-activated cements and concretes. , 2015, , 663-686.		73
43	Method to analyse the contribution of material's sensitivity in buildings' environmental impact. Journal of Cleaner Production, 2014, 66, 54-64.	4.6	72
44	Transportation matters – Does it? GIS-based comparative environmental assessment of concrete mixes with cement, fly ash, natural and recycled aggregates. Resources, Conservation and Recycling, 2018, 137, 1-10.	5.3	63
45	Correlations in Life Cycle Impact Assessment methods (LCIA) and indicators for construction materials: What matters?. Ecological Indicators, 2016, 67, 174-182.	2.6	61
46	Industrial or Traditional Bamboo Construction? Comparative Life Cycle Assessment (LCA) of Bamboo-Based Buildings. Sustainability, 2018, 10, 3096.	1.6	60
47	Emplacement and assembly of shallow intrusions from multiple magma pulses, Henry Mountains, Utah. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2009, 100, 117-132.	0.3	57
48	A multinuclear static NMR study of geopolymerisation. Cement and Concrete Research, 2015, 75, 104-109.	4.6	55
49	Self-Compacted Clay based Concrete (SCCC): proof-of-concept. Journal of Cleaner Production, 2016, 117, 160-168.	4.6	55
50	Uncertainty of building elements' service lives in building LCA & LCC: What matters?. Building and Environment, 2020, 183, 106904.	3.0	54
51	Carbon budgets for buildings: harmonising temporal, spatial and sectoral dimensions. Buildings and Cities, 2020, 1, 429-452.	1.1	50
52	LCA and BIM: Integrated Assessment and Visualization of Building Elements' Embodied Impacts for Design Guidance in Early Stages. Procedia CIRP, 2018, 69, 218-223.	1.0	47
53	Lime as an Anti-Plasticizer for Self-Compacting Clay Concrete. Materials, 2016, 9, 330.	1.3	44
54	When CO2 counts: Sustainability assessment of industrialized bamboo as an alternative for social housing programs in the Philippines. Building and Environment, 2016, 103, 44-53.	3.0	44

#	Article	IF	CITATIONS
55	What is the optimal robust environmental and cost-effective solution for building renovation? Not the usual one. Energy and Buildings, 2021, 251, 111329.	3.1	43
56	Assessing the environmental impact of conventional and â€~green' cement production. , 2014, , 199-238.		42
57	Land availability in Europe for a radical shift toward bio-based construction. Sustainable Cities and Society, 2021, 70, 102929.	5.1	40
58	Cradle-to-gate life cycle assessment of self-healing engineered cementitious composite with in-house developed (semi-)synthetic superabsorbent polymers. Cement and Concrete Composites, 2018, 94, 166-180.	4.6	38
59	Global or local construction materials for post-disaster reconstruction? Sustainability assessment of twenty post-disaster shelter designs. Building and Environment, 2015, 92, 692-702.	3.0	36
60	Using anticipatory life cycle assessment to enable future sustainable construction. Journal of Industrial Ecology, 2020, 24, 178-192.	2.8	35
61	The Maya blue nanostructured material concept applied to colouring geopolymers. RSC Advances, 2015, 5, 98834-98841.	1.7	34
62	Dynamic Assessment of Construction Materials in Urban Building Stocks: A Critical Review. Environmental Science & Technology, 2019, 53, 9992-10006.	4.6	34
63	Statistical method to identify robust building renovation choices for environmental and economic performance. Building and Environment, 2020, 183, 107143.	3.0	34
64	Embodied GHG Emissions of Wooden Buildings—Challenges of Biogenic Carbon Accounting in Current LCA Methods. Frontiers in Built Environment, 2021, 7, .	1.2	33
65	Environmental impact assessment of wood bio-concretes: Evaluation of the influence of different supplementary cementitious materials. Construction and Building Materials, 2021, 268, 121146.	3.2	32
66	Fabric studies within the Cascade Lake shear zone, Sierra Nevada, California. Tectonophysics, 2005, 400, 209-226.	0.9	31
67	A method for allocation according to the economic behaviour in the EU-ETS for by-products used in cement industry. International Journal of Life Cycle Assessment, 2013, 18, 113-126.	2.2	31
68	A fresh look at dense clay paste: Deflocculation and thixotropy mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 252-260.	2.3	31
69	Integrated BIM-Based LCA for the Entire Building Process Using an Existing Structure for Cost Estimation in the Swiss Context. Sustainability, 2020, 12, 3748.	1.6	31
70	Detailed Assessment of Embodied Carbon of HVAC Systems for a New Office Building Based on BIM. Sustainability, 2020, 12, 3372.	1.6	30
71	Influence of simplification of life cycle inventories on the accuracy of impact assessment: application to construction products. Journal of Cleaner Production, 2014, 79, 142-151.	4.6	29
72	From casting to 3D printing geopolymers: A proof of concept. Cement and Concrete Research, 2021, 143, 106374.	4.6	28

#	Article	IF	CITATIONS
73	Regional circular economy of building materials: Environmental and economic assessment combining Material Flow Analysis, Inputâ€Output Analyses, and Life Cycle Assessment. Journal of Industrial Ecology, 2022, 26, 562-576.	2.8	28
74	When more is better – Comparative LCA of wall systems with stone. Building and Environment, 2014, 82, 628-639.	3.0	27
75	Environmental impact of Portland cement production. , 2013, , 3-25.		26
76	Influence of material choice, renovation rate, and electricity grid to achieve a Paris Agreement-compatible building stock: A Portuguese case study. Building and Environment, 2021, 195, 107773.	3.0	26
77	Adaptation of environmental data to national and sectorial context: application for reinforcing steel sold on the French market. International Journal of Life Cycle Assessment, 2013, 18, 926-938.	2.2	25
78	A design integrated parametric tool for real-time Life Cycle Assessment – Bombyx project. IOP Conference Series: Earth and Environmental Science, 2019, 323, 012112.	0.2	23
79	Bio-based materials as a robust solution for building renovation: A case study. Applied Energy, 2022, 316, 119102.	5.1	23
80	Exploring the Potential for Utilization of Medium and Highly Sulfidic Mine Tailings in Construction Materials: A Review. Sustainability, 2021, 13, 12150.	1.6	22
81	Environmental assessment of multi-functional building elements constructed with digital fabrication techniques. International Journal of Life Cycle Assessment, 2019, 24, 1027-1039.	2.2	21
82	Life Cycle Analysis of Strengthening Existing RC Structures with R-PE-UHPFRC. Sustainability, 2019, 11, 6923.	1.6	21
83	Material Diets for Climate-Neutral Construction. Environmental Science & Technology, 2022, 56, 5213-5223.	4.6	21
84	Land-cover-based indicator to assess the accessibility of resources used in the construction sector. Resources, Conservation and Recycling, 2015, 94, 80-91.	5.3	20
85	Investigating transparency regarding ecoinvent users' system model choices. International Journal of Life Cycle Assessment, 2019, 24, 1-5.	2.2	20
86	Comparison of the environmental assessment of an identical office building with national methods. IOP Conference Series: Earth and Environmental Science, 2019, 323, 012037.	0.2	20
87	A matter of speed: The impact of material choice in post-disaster reconstruction. International Journal of Disaster Risk Reduction, 2019, 34, 34-44.	1.8	20
88	Primary data priorities for the life cycle inventory of construction products: focus on foreground processes. International Journal of Life Cycle Assessment, 2020, 25, 980-997.	2.2	18
89	Power: A new paradigm for energy use in sustainable construction. Ecological Indicators, 2012, 23, 109-115.	2.6	17
90	Method and application of characterisation of life cycle impact data of construction materials using geographic information systems. International Journal of Life Cycle Assessment, 2017, 22, 1210-1219.	2.2	17

#	Article	IF	CITATIONS
91	Carbon Footprint Assessment of a Novel Bio-Based Composite for Building Insulation. Sustainability, 2022, 14, 1384.	1.6	17
92	Influence of magnesium on deflocculated kaolinite suspension: Mechanism and kinetic control. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 544, 196-204.	2.3	16
93	Challenges and Opportunities for Circular Economy Promotion in the Building Sector. Sustainability, 2022, 14, 1569.	1.6	16
94	Embodied GHGs in a Fast Growing City: Looking at the Evolution of a Dwelling Stock using Structural Element Breakdown and Policy Scenarios. Journal of Industrial Ecology, 2018, 22, 1339-1351.	2.8	15
95	Foaming of Recyclable Clays into Energy-Efficient Low-Cost Thermal Insulators. ACS Sustainable Chemistry and Engineering, 2019, 7, 15597-15606.	3.2	15
96	The future in and of criticality assessments. Journal of Industrial Ecology, 2019, 23, 751-766.	2.8	14
97	Influence of additives on poured earth strength development. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	1.3	14
98	Invasive alien plants as an alternative resource for concrete production – multi-scale optimization including carbon compensation, cleared land and saved water runoff in South Africa. Resources, Conservation and Recycling, 2021, 167, 105361.	5.3	13
99	Mechanisms for efficient clay dispersing effect with tannins and sodium hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127589.	2.3	13
100	Embodied GHG emissions of buildings – Critical reflection of benchmark comparison and in-depth analysis of drivers. IOP Conference Series: Earth and Environmental Science, 2020, 588, 032048.	0.2	12
101	Sustainable built environment: transition towards a net zero carbon built environment. International Journal of Life Cycle Assessment, 2020, 25, 1160-1167.	2.2	12
102	Rate of construction of the Black Mesa bysmalith, Henry Mountains, Utah. Geological Society Special Publication, 2004, 234, 163-173.	0.8	10
103	A time-series material-product chain model extended to a multiregional industrial symbiosis: The case of material circularity in the cement sector. Ecological Economics, 2021, 179, 106872.	2.9	10
104	Emplacement and assembly of shallow intrusions from multiple magma pulses, Henry Mountains, Utah. , 2010, , .		9
105	Linking research activities and their implementation in practice in the construction sector: the LCA Construction 2012 experience. International Journal of Life Cycle Assessment, 2014, 19, 463-470.	2.2	9
106	Where does the money go? Economic flow analysis of construction projects. Building Research and Information, 2018, 46, 348-366.	2.0	9
107	Consistent BIM-led LCA during the entire building design process. IOP Conference Series: Earth and Environmental Science, 2019, 323, 012099.	0.2	9
108	Evaluating the risks in the construction wood product system through a criticality assessment framework. Resources, Conservation and Recycling, 2019, 146, 68-76.	5.3	9

#	Article	IF	CITATIONS
109	Tracking the Environmental Consequences of Circular Economy over Space and Time: The Case of Close- and Open-Loop Recovery of Postconsumer Glass. Environmental Science & Technology, 2021, 55, 11521-11532.	4.6	9
110	Influence of tannin and iron ions on the water resistance of clay materials. Construction and Building Materials, 2022, 323, 126571.	3.2	9
111	Environmental Savings Potential from the Use of Bahareque (Mortar Cement Plastered Bamboo) in Switzerland. Key Engineering Materials, 2014, 600, 21-33.	0.4	8
112	Using a budget approach for decision-support in the design process. IOP Conference Series: Earth and Environmental Science, 2019, 323, 012026.	0.2	8
113	Decarbonizing the cement and concrete sector: integration of the full value chain to reach net zero emissions in Europe. IOP Conference Series: Earth and Environmental Science, 0, 225, 012009.	0.2	8
114	Discussion of "Earth concrete. Stabilization revisited― Cement and Concrete Research, 2020, 130, 105991.	4.6	8
115	Environmental Potential of Earth-Based Building Materials: Key Facts and Issues from a Life Cycle Assessment Perspective. RILEM State-of-the-Art Reports, 2022, , 261-296.	0.3	8
116	A data-driven parametric tool for under-specified LCA in the design phase. IOP Conference Series: Earth and Environmental Science, 2020, 588, 052018.	0.2	7
117	Component-Based Model for Building Material Stock and Waste-Flow Characterization: A Case in the ÃŽle-de-France Region. Sustainability, 2021, 13, 13159.	1.6	7
118	Parametric Approach to Simplified Life Cycle Assessment of Social Housing Projects. Sustainability, 2022, 14, 7409.	1.6	7
119	Global or local construction materials for post-disaster reconstruction? Sustainability assessment of 20 post-disaster shelter designs. Data in Brief, 2015, 4, 308-314.	0.5	6
120	Probabilistic LCA and LCC to identify robust and reliable renovation strategies. IOP Conference Series: Earth and Environmental Science, 2019, 323, 012058.	0.2	6
121	Towards a model for circular renovation of the existing building stock: a preliminary study on the potential for CO ₂ reduction of bio-based insulation materials. IOP Conference Series: Earth and Environmental Science, 2019, 323, 012176.	0.2	6
122	Massive timber building vs. conventional masonry building. A comparative life cycle assessment of an Italian case study. IOP Conference Series: Earth and Environmental Science, 2019, 323, 012016.	0.2	6
123	Designing Reinforced Concrete Beams Containing Supplementary Cementitious Materials. Materials, 2019, 12, 1248.	1.3	6
124	Dataset of service life data for 100 building elements and technical systems including their descriptive statistics and fitting to lognormal distribution. Data in Brief, 2021, 36, 107062.	0.5	6
125	Design-Integrated LCA Using Early BIM. , 2018, , 269-279.		6
126	Introducing Low Carbon Cement in Cuba - A Life Cycle Sustainability Assessment Study. RILEM Bookseries, 2018, , 415-421.	0.2	6

#	Article	IF	CITATIONS
127	Powder bed 3D printing with quarry waste. IOP Conference Series: Earth and Environmental Science, 2020, 588, 042056.	0.2	6
128	Embodied versus operational energy in residential and commercial buildings: where should we focus?. Journal of Physics: Conference Series, 2019, 1343, 012178.	0.3	5
129	Implications of using systematic decomposition structures to organize building LCA information: A comparative analysis of national standards and guidelines- IEA EBC ANNEX 72. IOP Conference Series: Earth and Environmental Science, 2020, 588, 022008.	0.2	5
130	Dynamic life cycle assessment of straw-based renovation: A case study from a Portuguese neighbourhood. IOP Conference Series: Earth and Environmental Science, 2020, 588, 042054.	0.2	5
131	Stakeholder influence on global warming potential of reinforced concrete structure. Journal of Building Engineering, 2021, 44, 102979.	1.6	5
132	Geopolymer Formulation for Binder Jet 3D Printing. RILEM Bookseries, 2020, , 153-161.	0.2	5
133	Uncertainty, variability, price changes and their implications on a regional building materials industry: The case of Swiss canton Argovia. Journal of Cleaner Production, 2022, 330, 129944.	4.6	5
134	Regional environmental-economic assessment of building materials to promote circular economy: comparison of three Swiss cantons. Resources, Conservation and Recycling, 2022, 181, 106247.	5.3	5
135	Fleet-based LCA applied to the building sector – Environmental and economic analysis of retrofit strategies. IOP Conference Series: Earth and Environmental Science, 2019, 323, 012172.	0.2	4
136	Rethinking the roles in the AEC industry to accommodate digital fabrication. , 2018, , .		4
137	Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions. EPJ Web of Conferences, 2017, 140, 13010.	0.1	3
138	Sustainability assessment in Cuban cement sector- a methodological approach. IOP Conference Series: Earth and Environmental Science, 2019, 323, 012128.	0.2	3
139	A Life-Cycle Approach to Building Energy Retrofitting: Bio-Based Technologies for Sustainable Urban Regeneration. IOP Conference Series: Earth and Environmental Science, 2019, 290, 012057.	0.2	3
140	The informal city as a socio-technical system: Construction management and money distribution in the informal and upgraded communities of Bangkok. Journal of Cleaner Production, 2020, 256, 120142.	4.6	3
141	Evaluation of dry wall system and its features in environmental sustainability. Journal of Cleaner Production, 2021, 278, 123290.	4.6	3
142	Beyond materials: The construction process in space, time and culture in the informal settlement of Mathare, Nairobi. Development Engineering, 2021, 6, 100071.	1.4	3
143	Robust and resilient renovation solutions in different climate change scenarios. IOP Conference Series: Earth and Environmental Science, 0, 588, 032042.	0.2	3
144	Advances in Binder-Jet 3D Printing of Non-cementitious Materials. RILEM Bookseries, 2020, , 103-112.	0.2	3

#	Article	IF	CITATIONS
145	Composite UHPFRC-concrete construction for rehabilitation – most recent advances and applications. Bridge Maintenance, Safety and Management, 2010, , 445-446.	0.1	2
146	Transition Towards a Net Zero Carbon Built Environment. International Journal of Life Cycle Assessment, 2019, 24, 362-363.	2.2	2
147	Assessment of Sustainability of Low Carbon Cement in Cuba. Cement Pilot Production and Prospective Case. RILEM Bookseries, 2015, , 189-194.	0.2	2
148	Potencial and limitations of environmental design with LCA tools. Igra Ustvarjalnosti, 2017, 2017, 034-045.	0.2	2
149	Deriving global carbon budgets for the Swiss built environment. Journal of Physics: Conference Series, 2021, 2042, 012172.	0.3	2
150	Eco-efficiency assessment of conventional OPC/PPC replacement by LC3 in Cuban residential buildings. IOP Conference Series: Earth and Environmental Science, 2019, 323, 012129.	0.2	1
151	When low strength materials meet funicular structures: a sustainable clay floor structure solution for emerging contexts. IOP Conference Series: Earth and Environmental Science, 2020, 588, 042024.	0.2	1
152	A reverse engineering approach for low environmental impact earth stabilization technique. IOP Conference Series: Earth and Environmental Science, 2020, 588, 042058.	0.2	1
153	Uncertainty and Sensitivity Analyses for Evaluating the Building Elementâ€~̃s Replacement in Building LCA. , 0, , .		1
154	Tackling Variability of Clay to Provide a Robust Binder. , 0, , .		1
155	Supply chain mapping and stakeholders' assessment towards the Sustainable Development Goals: the case of the construction sector in the informal settlement of Mathare, Nairobi. IOP Conference Series: Earth and Environmental Science, 2020, 588, 042033.	0.2	0
156	Endless possibilities. Early Years Educator, 2011, 12, viii-ix.	0.0	0
157	Speeding up Post-Disaster Reconstruction: Material Choice or Roof Design?. , 2018, , .		0
158	Water Stabilization of Clay Bricks with Improved Tannin and Iron Mixes. , 0, , .		0
159	Earth Plastered Wall Heating as a Low-Emitting, Cost-Effective and Robust Energy System for Building Renovation. , 0, , .		0
160	How can a Climate-Neutral Building Look Like?. , 0, , .		0
161	Self-Desiccation of a Vernacular CSA Binder. , 0, , .		О