Toshiaki Hanaoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/88725/publications.pdf Version: 2024-02-01

Τοςμιλει Ηλνιλοελ

#	Article	IF	CITATIONS
1	Evaluation of n-butene synthesis from dimethyl ether in the production of 1,3-butadiene from lignin: A techno-economic analysis. Renewable Energy, 2021, 163, 964-973.	8.9	6
2	n-Butene Synthesis in the Dimethyl Ether-to-Olefin Reaction over Zeolites. Catalysts, 2021, 11, 743.	3.5	3
3	Development Trends of 1,3-Butadiene Production Process from Lignin through Process Simulation. Oleoscience, 2021, 21, 403-408.	0.0	0
4	Improvement of the 1,3-butadiene production process from lignin – A comparison with the gasification power generation process. Renewable Energy, 2019, 135, 1303-1313.	8.9	8
5	Efficiency Estimation and Improvement of the 1,3-Butadiene Production Process from Lignin via Syngas through Process Simulation. Energy & Fuels, 2017, 31, 12965-12976.	5.1	12
6	Dispersion State of Catalytic Metal Supported on Bio-Char Elucidated Using Energy Dispersive X-ray Spectroscopy: Effects of Catalyst Type and Heating Process. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2017, 96, 73-85.	0.2	2
7	Modeling of <i>n</i> -Paraffin Cracking with Vapor-liquid Equilibrium. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2016, 95, 167-172.	0.2	0
8	Effect of Process-Condition-Dependent Chain Growth Probability and Methane Formation on Modeling of the Fischer–Tropsch Process. Energy & Fuels, 2016, 30, 7971-7981.	5.1	5
9	Estimation and Improvement of the 1,3-Butadiene Production Process from Lignin through Pinch Analysis. Energy & Fuels, 2016, 30, 7842-7850.	5.1	4
10	Effects of Catalyst Preparation on Hydrocarbon Product Distribution in Hydrocracking of the Fischer-Tropsch Product with Low Pt-Loaded Catalysts. Catalysts, 2015, 5, 1983-2000.	3.5	5
11	Fischer–Tropsch synthesis over alumina supported cobalt catalyst: Effect of promoter addition. Applied Catalysis A: General, 2015, 494, 1-11.	4.3	60
12	Ruthenium Modification on Mn and Zr-Modified Co/SiO2 Catalysts for Slurry-Phase Fischer-Tropsch Synthesis. Catalysts, 2015, 5, 26-37.	3.5	6
13	Fischer–Tropsch synthesis over alumina supported bimetallic Co–Ni catalyst: Effect of impregnation sequence and solution. Journal of Molecular Catalysis A, 2015, 407, 15-24.	4.8	33
14	Preparation for Pt-Loaded Zeolite Catalysts Using w/o Microemulsion and Their Hydrocracking Behaviors on Fischer-Tropsch Product. Catalysts, 2015, 5, 88-105.	3.5	7
15	Effect of Pt particle density on the hydrocracking of Fischer–Tropsch products over Pt-loaded zeolite catalysts prepared using water-in-oil microemulsions. Chemical Engineering Journal, 2015, 274, 256-264.	12.7	14
16	Jet fuel synthesis from Fischer–Tropsch product under mild hydrocracking conditions using Pt-loaded catalysts. Chemical Engineering Journal, 2015, 263, 178-185.	12.7	51
17	Jet fuel synthesis in hydrocracking of Fischer–Tropsch product over Pt-loaded zeolite catalysts prepared using microemulsions. Fuel Processing Technology, 2015, 129, 139-146.	7.2	22
18	Preparation of Co/Al2O3 catalyst for Fischer–Tropsch synthesis: Combination of impregnation method and homogeneous precipitation method. Applied Catalysis A: General, 2014, 475, 1-9.	4.3	22

Τοςηιακί Ηαναόκα

#	Article	IF	CITATIONS
19	Fischer–Tropsch synthesis over a Co/SiO2 catalyst modified with Mn- and Zr under practical conditions. Catalysis Communications, 2014, 57, 36-39.	3.3	9
20	Fischer–Tropsch synthesis over alumina supported cobalt catalyst: Effect of crystal phase and pore structure of alumina support. Journal of Molecular Catalysis A, 2014, 394, 22-32.	4.8	35
21	Factors influencing the activity of Co/Ca/TiO2 catalyst for Fischer–Tropsch synthesis. Catalysis Today, 2014, 232, 2-10.	4.4	16
22	Effect of metal content on CO ₂ gasification behavior of K- and Fe-loaded bio-chars. Journal of Thermal Science and Technology, 2014, 9, JTST0006-JTST0006.	1.1	7
23	Syngas production by CO2/O2 gasification of aquatic biomass. Fuel Processing Technology, 2013, 116, 9-15.	7.2	42
24	Syngas production by gasification of aquatic biomass with CO2/O2 and simultaneous removal of H2S and COS using char obtained in the gasification. Biomass and Bioenergy, 2013, 59, 448-457.	5.7	9
25	Mn and Zr modified Co/SiO2 catalysts development in slurry-phase Fischer–Tropsch synthesis. Applied Catalysis A: General, 2013, 467, 47-54.	4.3	17
26	Pressurised gasification of wet ethanol fermentation residue for synthesis gas production. Bioresource Technology, 2013, 131, 341-348.	9.6	11
27	Fischer–Tropsch synthesis over TiO2 supported cobalt catalyst: Effect of TiO2 crystal phase and metal ion loading. Applied Catalysis A: General, 2013, 460-461, 8-14.	4.3	30
28	Enhancement of Gasification Rate of Biochar under Low-Temperature Conditions by Directly Supported Catalysts. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2013, 79, 2798-2809.	0.2	2
29	The effect of N2/CO2/O2 content and pressure on characteristics and CO2 gasification behavior of biomass-derived char. Fuel Processing Technology, 2012, 104, 287-294.	7.2	33
30	Hot and Dry Cleaning of Biomass-Gasified Gas Using Activated Carbons with Simultaneous Removal of Tar, Particles, and Sulfur Compounds. Catalysts, 2012, 2, 281-298.	3.5	11
31	New Trend of Biodiesel Fuels. Journal of the Japan Institute of Marine Engineering, 2012, 47, 39-44.	0.0	1
32	Biofuel Production by Hydrocracking of Biomass FT Wax over NiMo / Al2O3-SiO2 Catalyst. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2011, 90, 1171-1176.	0.2	7
33	Fischer-Tropsch Synthesis on Ru/Mn/Al2O3 Catalyst in a BTL Plant Operation Using Woody Biomass. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2011, 90, 972-976.	0.2	2
34	Effects of Manganese Salts on Ru/Mn/Al ₂ O ₃ Catalytic Activity and Stability for Fischer-Tropsch Synthesis. Journal of the Japan Petroleum Institute, 2011, 54, 36-44.	0.6	4
35	Liquid Fuel Production from Woody Biomass via Oxygen-enriched Air/CO2 Gasification on a Bench Scale. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2011, 90, 1072-1080.	0.2	24
36	Effects of Ruthenium Precursors on Ru/Mn/Al ₂ O ₃ and Ru/Al ₂ O ₃ Catalysts for Fischer-Tropsch Synthesis. Journal of the Japan Petroleum Institute, 2010, 53, 75-82.	0.6	13

Τοςηιακί Ηαναόκα

#	Article	IF	CITATIONS
37	Bench-scale production of liquid fuel from woody biomass via gasification. Fuel Processing Technology, 2010, 91, 859-865.	7.2	37
38	Fischer-Tropsch Synthesis on Ru/Mn/Al ₂ O ₃ Catalysts: Effects of Manganese Loading. Journal of the Japan Petroleum Institute, 2010, 53, 222-231.	0.6	4
39	Synthesis of Liquefied Bio-Dimethyl Ether (DME) from Woody Biomass via Gasification. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2009, 88, 918-922.	0.2	3
40	Syngas Production by Woody Biomass Gasification with a CO2/O2 Mixture. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2009, 88, 862-868.	0.2	6
41	Effect of pyrolysis conditions on gasification reactivity of woody biomass-derived char. Proceedings of the Combustion Institute, 2009, 32, 2013-2020.	3.9	76
42	Selective Hydrocracking of Fischer–Tropsch Waxes to High-quality Diesel Fuel Over Pt-promoted Polyoxocation-pillared Montmorillonites. Topics in Catalysis, 2009, 52, 597-608.	2.8	38
43	Fischer–Tropsch synthesis in slurry-phase reactors over Mn- and Zr-modified Co/SiO2 catalysts. Fuel Processing Technology, 2009, 90, 901-908.	7.2	61
44	Synthesis of Zr-grafted SBA-15 as an Effective Support for Cobalt Catalyst in Fischer–Tropsch Synthesis. Chemistry Letters, 2008, 37, 984-985.	1.3	19
45	Bench-Scale Production of Hydrocarbon Liquid Fuel from Woody Biomass via Gasification. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2008, 87, 737-743.	0.2	6
46	Hydrocracking of Fischer–Tropsch Wax to Diesel-range Hydrocarbons over Bifunctional Catalysts Containing Pt and Polyoxocation-pillared Montmorillonite. Chemistry Letters, 2007, 36, 1470-1471.	1.3	10
47	Hydroisomerization and hydrocracking of long chain n-alkane and Fischer-Tropsch wax over bifunctional Pt-promoted Al-HMS catalysts. Studies in Surface Science and Catalysis, 2007, , 781-785.	1.5	4
48	Removal of Tar Model Compounds Produced from Biomass Gasification Using Activated Carbons. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2007, 86, 707-711.	0.2	29
49	Co-gasification of woody biomass and coal with air and steam. Fuel, 2007, 86, 684-689.	6.4	248
50	A kinetic study of in situ CO2 removal gasification of woody biomass for hydrogen production. Biomass and Bioenergy, 2007, 31, 556-562.	5.7	20
51	Syntheses of new peroxo-polyoxometalates intercalated layered double hydroxides for propene epoxidation by molecular oxygen in methanol. Journal of Catalysis, 2007, 248, 277-287.	6.2	43
52	Synthesis of Zr-containing FSM-16 as an effective support for Co catalyst in the Fischer-Tropsch synthesis. Reaction Kinetics and Catalysis Letters, 2007, 92, 147-154.	0.6	9
53	A Kinetic Study of the Decomposition of CaCO3 at High CO2 Partial Pressure for the Regeneration of a CO2 Sorbent, Journal of Chemical Engineering of Japan, 2006, 39, 1191-1194. Hydrogen production from Woody biomass by steam gasification using a <mml:math <="" altimg="si14.gif" td=""><td>0.6</td><td>7</td></mml:math>	0.6	7
54	overnow= scroit_xmins:xocs= nttp://www.elsevier.com/xmi/xocs/dtd xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/co	5.7	180

Τοςηιακί Ηαναόκα

#	Article	IF	CITATIONS
55	Effect of natural zeolite on methane production for anaerobic digestion of ammonium rich organic sludge. Bioresource Technology, 2005, 96, 459-464.	9.6	109
56	Effect of woody biomass components on air-steam gasification. Biomass and Bioenergy, 2005, 28, 69-76.	5.7	170
57	Simultaneous removal of H2S and COS using activated carbons and their supported catalysts. Catalysis Today, 2005, 104, 94-100.	4.4	100
58	Effect of Chemical Property of Waste Biomass on Air-Steam Gasification. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2005, 84, 1012-1018.	0.2	4
59	Process Evaluation of Biomass to Liquid Fuel Production System with Gasification and Liquid Fuel Synthesis. Studies in Surface Science and Catalysis, 2004, 153, 79-84.	1.5	2
60	Organic Compounds Formed by Thermochemical Degradation of Glucose-Glycine Melanoidins Using Hot Compressed Water. Journal of Chemical Engineering of Japan, 2004, 37, 915-919.	0.6	11
61	Hot Gas Cleaning of Producer Gas from Biomass Gasification Using Carbonaceous Materials as a Bed Additive. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2004, 83, 828-831.	0.2	13
62	Hot Compressed Extraction of Terpenoids from Cryptomeria japonica Bark. Journal of Chemical Engineering of Japan, 2003, 36, 720-724.	0.6	0
63	Methanol Mediated Extraction of Phenolic Compounds from Wood Tar. Chemistry Letters, 2002, 31, 546-547.	1.3	3
64	Hot Compressed Water Treatmentfor Production of Charcoal from Wood Journal of Chemical Engineering of Japan, 2002, 35, 1020-1023.	0.6	35
65	Size Control of Metastable ZnS Particles in W/O Microemulsion. Bulletin of the Chemical Society of Japan, 2001, 74, 1349-1354.	3.2	12
66	In Situ Immobilization of Ultrafine Particles Synthesized in a Water/Oil Microemulsion. Journal of Colloid and Interface Science, 2001, 235, 235-240.	9.4	15
67	Microalgal Cultivation in a Solution Recovered from the Low-Temperature Catalytic Gasification of the Microalga Journal of Bioscience and Bioengineering, 2001, 91, 311-313.	2.2	16
68	Control of the rhodium particle size of the silica-supported catalysts by using microemulsion. Applied Catalysis A: General, 2000, 190, 291-296.	4.3	33
69	Title is missing!. Catalysis Letters, 2000, 64, 27-31.	2.6	23
70	Preparation method for supported metal catalysts using w/o microemulsion: Study on immobilization conditions of metal particles by hydrolysis of alkoxide. Catalysis Today, 1998, 45, 203-208.	4.4	24
71	Enhancement of CO Hydrogenation Activity of Rh/SiO2with Low Rhodium Content. Chemistry Letters, 1997, 26, 645-646.	1.3	9
72	Hydrogenation of carbon monoxide over zirconia-supported palladium catalysts prepared using water-in-oil microemulsion. Applied Catalysis A: General, 1997, 155, 283-289.	4.3	18

#	Article	IF	CITATIONS
73	Size control of rhodium particles of silica-supported catalysts using water-in-oil microemulsion. Applied Surface Science, 1997, 121-122, 347-350.	6.1	19
74	Control of Rh Particle Size of Rh/SiO2 Catalysts Prepared from Microemulsions. Effects of Surfactant Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 1996, 39, 285-289.	0.1	4
75	A Novel Preparation Method of Supported Metal Catalysts Using Microemulsion Kagaku Kogaku Ronbunshu, 1995, 21, 990-996.	0.3	9