
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8872472/publications.pdf Version: 2024-02-01

LULL C. DALISAS

#	Article	IF	CITATIONS
1	A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51, 335.	0.3	3,071
2	New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2013, 61, 167.	0.3	2,818
3	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	4.2	2,002
4	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
5	A Burning Story: The Role of Fire in the History of Life. BioScience, 2009, 59, 593-601.	2.2	749
6	Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 2011, 16, 406-411.	4.3	735
7	Changes in Fire and Climate in the Eastern Iberian Peninsula (Mediterranean Basin). Climatic Change, 2004, 63, 337-350.	1.7	624
8	Are wildfires a disaster in the Mediterranean basin? - A review. International Journal of Wildland Fire, 2008, 17, 713.	1.0	602
9	Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change, 2012, 110, 215-226.	1.7	566
10	PLANT FUNCTIONAL TRAITS IN RELATION TO FIRE IN CROWN-FIRE ECOSYSTEMS. Ecology, 2004, 85, 1085-1100.	1.5	539
11	Patterns of plant species richness in relation to different environments: An appraisal. Journal of Vegetation Science, 2001, 12, 153-166.	1.1	419
12	Evolutionary ecology of resprouting and seeding in fireâ€prone ecosystems. New Phytologist, 2014, 204, 55-65.	3.5	380
13	Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Frontiers in Ecology and the Environment, 2011, 9, 278-286.	1.9	370
14	Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2016, 64, 715.	0.3	361
15	Pines and oaks in the restoration of Mediterranean landscapes of Spain: New perspectives for an old practice – a review. Plant Ecology, 2004, 171, 209-220.	0.7	322
16	Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 2020, 108, 2047-2069.	1.9	281
17	Bark thickness and fire regime. Functional Ecology, 2015, 29, 315-327.	1.7	273
18	Wildfire management in Mediterranean-type regions: paradigm change needed. Environmental Research Letters, 2020, 15, 011001.	2.2	267

#	Article	IF	CITATIONS
19	The global fire-productivity relationship. Global Ecology and Biogeography, 2013, 22, 728-736.	2.7	265
20	Fire as a key driver of Earth's biodiversity. Biological Reviews, 2019, 94, 1983-2010.	4.7	263
21	Fuel shapes the fire–climate relationship: evidence from Mediterranean ecosystems. Global Ecology and Biogeography, 2012, 21, 1074-1082.	2.7	261
22	Unearthing belowground bud banks in fireâ€prone ecosystems. New Phytologist, 2018, 217, 1435-1448.	3.5	257
23	Fire and biodiversity in the Anthropocene. Science, 2020, 370, .	6.0	240
24	Plant Functional Types: Are We Getting Any Closer to the Holy Grail?. , 2007, , 149-164.		237
25	Coefficient shifts in geographical ecology: an empirical evaluation of spatial and nonâ€spatial regression. Ecography, 2009, 32, 193-204.	2.1	231
26	Fireâ€adapted traits of <i>Pinus</i> arose in the fiery Cretaceous. New Phytologist, 2012, 194, 751-759.	3.5	225
27	Fireâ€related traits for plant species of the Mediterranean Basin. Ecology, 2009, 90, 1420-1420.	1.5	217
28	Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south-east Australia. Global Ecology and Biogeography, 2007, 16, 330-340.	2.7	202
29	Wildfires as an ecosystem service. Frontiers in Ecology and the Environment, 2019, 17, 289-295.	1.9	199
30	Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters, 2018, 13, 033003.	2.2	198
31	Towards understanding resprouting at the global scale. New Phytologist, 2016, 209, 945-954.	3.5	197
32	Flammability as an ecological and evolutionary driver. Journal of Ecology, 2017, 105, 289-297.	1.9	196
33	Response of plant functional types to changes in the fire regime in Mediterranean ecosystems: A simulation approach. Journal of Vegetation Science, 1999, 10, 717-722.	1.1	188
34	Comment on "The global tree restoration potential― Science, 2019, 366, .	6.0	185
35	Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany, 2010, 105, 627-635.	1.4	184
36	Disturbance maintains alternative biome states. Ecology Letters, 2016, 19, 12-19.	3.0	181

#	Article	IF	CITATIONS
37	Patterns of tree species richness in relation to environment in southeastern New South Wales, Australia. Austral Ecology, 1996, 21, 154-164.	0.7	176
38	Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. Journal of Ecology, 2007, 95, 1316-1323.	1.9	173
39	Fire drives functional thresholds on the savanna–forest transition. Ecology, 2013, 94, 2454-2463.	1.5	170
40	Species richness and cover along a 60-year chronosequence in old-fields of southeastern Spain. Plant Ecology, 2004, 174, 257-270.	0.7	165
41	The role of fire in European Mediterranean ecosystems. , 1999, , 3-16.		160
42	The Jungle of Methods for Evaluating Phenotypic and Phylogenetic Structure of Communities. BioScience, 2010, 60, 614-625.	2.2	154
43	Wildfires and global change. Frontiers in Ecology and the Environment, 2021, 19, 387-395.	1.9	153
44	Mediterranean vegetation dynamics: modelling problems and functional types. , 1999, 140, 27-39.		147
45	Towards an understanding of the evolutionary role of fire in animals. Evolutionary Ecology, 2018, 32, 113-125.	0.5	147
46	Resprouting ofQuercus suberin NE Spain after fire. Journal of Vegetation Science, 1997, 8, 703-706.	1.1	143
47	A GLOBAL EVALUATION OF METABOLIC THEORY AS AN EXPLANATION FOR TERRESTRIAL SPECIES RICHNESS GRADIENTS. Ecology, 2007, 88, 1877-1888.	1.5	139
48	Abrupt Climate-Independent Fire Regime Changes. Ecosystems, 2014, 17, 1109-1120.	1.6	139
49	Fire severity and seedling establishment in Pinus halepensis woodlands, eastern Iberian Peninsula. Plant Ecology, 2003, 169, 205-213.	0.7	135
50	Plant persistence traits in fire-prone ecosystems of the Mediterranean basin: a phylogenetic approach. Oikos, 2005, 109, 196-202.	1.2	133
51	Title is missing!. Plant Ecology, 2003, 167, 223-235.	0.7	125
52	Burning seeds: germinative response to heat treatments in relation to resprouting ability. Journal of Ecology, 2008, 96, 543-552.	1.9	125
53	Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant Ecology, 2010, 207, 233-244.	0.7	125
54	Post-fire tree mortality in mixed forests of central Portugal. Forest Ecology and Management, 2010, 260, 1184-1192.	1.4	122

#	Article	IF	CITATIONS
55	Post-fire regeneration variability of Pinus halepensis in the eastern Iberian Peninsula. Forest Ecology and Management, 2004, 203, 251-259.	1.4	117
56	Acorn dispersal estimated by radio-tracking. Oecologia, 2007, 153, 903-911.	0.9	114
57	Evolutionary fire ecology: lessons learned from pines. Trends in Plant Science, 2015, 20, 318-324.	4.3	112
58	Epicormic Resprouting in Fire-Prone Ecosystems. Trends in Plant Science, 2017, 22, 1008-1015.	4.3	112
59	FIRE REDUCES MORPHOSPACE OCCUPATION IN PLANT COMMUNITIES. Ecology, 2008, 89, 2181-2186.	1.5	109
60	Humboldt and the reinvention of nature. Journal of Ecology, 2019, 107, 1031-1037.	1.9	109
61	A functional trait database for Mediterranean Basin plants. Scientific Data, 2018, 5, 180135.	2.4	109
62	Species richness patterns in the understorey of Pyrenean Pinus sylvestris forest. Journal of Vegetation Science, 1994, 5, 517-524.	1.1	107
63	Fires enhance flammability in <i>Ulex parviflorus</i> . New Phytologist, 2012, 193, 18-23.	3.5	107
64	A hierarchical deductive approach for functional types in disturbed ecosystems. Journal of Vegetation Science, 2003, 14, 409-416.	1.1	106
65	Tanned or Burned: The Role of Fire in Shaping Physical Seed Dormancy. PLoS ONE, 2012, 7, e51523.	1.1	104
66	Alternative Biome States in Terrestrial Ecosystems. Trends in Plant Science, 2020, 25, 250-263.	4.3	103
67	Post-fire regeneration patterns in the eastern Iberian Peninsula. Acta Oecologica, 1999, 20, 499-508.	0.5	99
68	To resprout or not to resprout: factors driving intraspecific variability in resprouting. Oikos, 2012, 121, 1577-1584.	1.2	95
69	Fire and plant diversity at the global scale. Global Ecology and Biogeography, 2017, 26, 889-897.	2.7	95
70	The role ofÂtheÂperch effect onÂtheÂnucleation process inÂMediterranean semi-arid oldfields. Acta Oecologica, 2006, 29, 346-352.	0.5	94
71	The lanky and the corky: fireâ€escape strategies in savanna woody species. Journal of Ecology, 2013, 101, 1265-1272.	1.9	94
72	Physiological differences explain the coâ€existence of different regeneration strategies in Mediterranean ecosystems. New Phytologist, 2014, 201, 1277-1288.	3.5	90

#	Article	IF	CITATIONS
73	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37.	2.7	90
74	Fire structures pine serotiny at different scales. American Journal of Botany, 2013, 100, 2349-2356.	0.8	89
75	Coarseâ€scale plant species richness in relation to environmental heterogeneity. Journal of Vegetation Science, 2003, 14, 661-668.	1.1	88
76	Fuel loading and flammability in the Mediterranean Basin woody species with different post-fire regenerative strategies. International Journal of Wildland Fire, 2010, 19, 783.	1.0	88
77	Oak regeneration in heterogeneous landscapes: The case of fragmented Quercus suber forests in the eastern Iberian Peninsula. Forest Ecology and Management, 2006, 231, 196-204.	1.4	86
78	Root traits explain different foraging strategies between resprouting life histories. Oecologia, 2011, 165, 321-331.	0.9	85
79	Holocene fire activity and vegetation response in South-Eastern Iberia. Quaternary Science Reviews, 2010, 29, 1082-1092.	1.4	83
80	Fire and Plant Diversification in Mediterranean-Climate Regions. Frontiers in Plant Science, 2018, 9, 851.	1.7	81
81	Handbook of standardized protocols for collecting plant modularity traits. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 40, 125485.	1.1	81
82	A global synthesis of fire effects on pollinators. Global Ecology and Biogeography, 2019, 28, 1487-1498.	2.7	81
83	Functional trait effects on ecosystem stability: assembling the jigsaw puzzle. Trends in Ecology and Evolution, 2021, 36, 822-836.	4.2	81
84	Inferring differential evolutionary processes of plant persistence traits in Northern Hemisphere Mediterranean fire-prone ecosystems. Journal of Ecology, 2006, 94, 31-39.	1.9	77
85	Leaf traits and resprouting ability in the Mediterranean basin. Functional Ecology, 2006, 20, 941-947.	1.7	76
86	Rodent acorn selection in a Mediterranean oak landscape. Ecological Research, 2007, 22, 535-541.	0.7	75
87	Global patterns in fire leverage: the response of annual area burnt to previous fire. International Journal of Wildland Fire, 2015, 24, 297.	1.0	72
88	<i>InÂsitu</i> genetic association for serotiny, a fireâ€related trait, in Mediterranean maritime pine (<i>Pinus pinaster</i>). New Phytologist, 2014, 201, 230-241.	3.5	69
89	Socioeconomic Factors Drive Fire-Regime Variability in the Mediterranean Basin. Ecosystems, 2018, 21, 619-628.	1.6	69
90	Generalized fire response strategies in plants and animals. Oikos, 2019, 128, 147-153.	1.2	66

#	Article	IF	CITATIONS
91	Resprouting vs seeding - a Mediterranean perspective. Oikos, 2001, 94, 193-194.	1.2	65
92	Plant Functional Types in relation to disturbance and land use: Introduction. Journal of Vegetation Science, 2003, 14, 307-310.	1.1	62
93	Simulating Mediterranean landscape pattern and vegetation dynamics under different fire regimes. Plant Ecology, 2006, 187, 249-259.	0.7	62
94	Not only size matters: Acorn selection by the European jay (Garrulus glandarius). Acta Oecologica, 2007, 31, 353-360.	0.5	61
95	First insights into the transcriptome and development of new genomic tools of a widespread circumâ€Mediterranean tree species, <i>Pinus halepensis</i> Mill. Molecular Ecology Resources, 2014, 14, 846-856.	2.2	61
96	Local versus regional intraspecific variability in regeneration traits. Oecologia, 2012, 168, 671-677.	0.9	60
97	Secondary compounds enhance flammability in a Mediterranean plant. Oecologia, 2016, 180, 103-110.	0.9	60
98	Fire as a Selective Agent for both Serotiny and Nonserotiny Over Space and Time. Critical Reviews in Plant Sciences, 2020, 39, 140-172.	2.7	59
99	Flammability as a biological concept. New Phytologist, 2012, 194, 610-613.	3.5	58
100	On Plant Modularity Traits: Functions and Challenges. Trends in Plant Science, 2017, 22, 648-651.	4.3	57
101	Litter fall and litter decomposition inPinus sylvestrisforests of the eastern Pyrenees. Journal of Vegetation Science, 1997, 8, 643-650.	1.1	55
102	Cork Oak Vulnerability to Fire: The Role of Bark Harvesting, Tree Characteristics and Abiotic Factors. PLoS ONE, 2012, 7, e39810.	1.1	55
103	Coupling a water balance model with forest inventory data to predict drought stress: the role of forest structural changes vs. climate changes. Agricultural and Forest Meteorology, 2015, 213, 77-90.	1.9	55
104	Amounts of litter fall in some pine forests in a European transect, in particular Scots pine. Annales Des Sciences Forestières, 1999, 56, 625-639.	1.1	55
105	Fire severity as a key factor in post-fire regeneration of Pinus pinaster (Ait.) in Central Portugal. Annals of Forest Science, 2012, 69, 489-498.	0.8	53
106	Distinguishing disturbance from perturbations in fire-prone ecosystems. International Journal of Wildland Fire, 2019, 28, 282.	1.0	53
107	Greening and Browning in a Climate Change Hotspot: The Mediterranean Basin. BioScience, 2019, 69, 143-151.	2.2	52
108	Successional trends in standing dead biomass in Mediterranean basin species. Journal of Vegetation Science, 2011, 22, 467-474.	1.1	51

#	Article	IF	CITATIONS
109	The effect of landscape pattern on Mediterranean vegetation dynamics: A modelling approach using functional types. Journal of Vegetation Science, 2003, 14, 365-374.	1.1	49
110	Does plant richness influence animal richness?: the mammals of Catalonia (NE Spain). Diversity and Distributions, 2004, 10, 247-252.	1.9	48
111	Soil shapes community structure through fire. Oecologia, 2010, 163, 729-735.	0.9	48
112	Lignotubers in Mediterranean basin plants. Plant Ecology, 2016, 217, 661-676.	0.7	48
113	On the Three Major Recycling Pathways in Terrestrial Ecosystems. Trends in Ecology and Evolution, 2020, 35, 767-775.	4.2	48
114	The role of fire in structuring trait variability in Neotropical savannas. Oecologia, 2013, 171, 487-494.	0.9	47
115	Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait. Annals of Botany, 2014, 114, 571-577.	1.4	45
116	African geoxyles evolved in response to fire; frost came later. Evolutionary Ecology, 2017, 31, 603-617.	0.5	44
117	Modelling habitat quality for arboreal marsupials in the South Coastal forests of New South Wales, Australia. Forest Ecology and Management, 1995, 78, 39-49.	1.4	43
118	Fire regime and post-fire Normalized Difference Vegetation Index changes in the eastern Iberian peninsula (Mediterranean basin). International Journal of Wildland Fire, 2006, 15, 407.	1.0	43
119	BURNING PHYLOGENIES: FIRE, MOLECULAR EVOLUTIONARY RATES, AND DIVERSIFICATION. Evolution; International Journal of Organic Evolution, 2007, 61, 2195-2204.	1.1	43
120	Alternative fireâ€driven vegetation states. Journal of Vegetation Science, 2015, 26, 4-6.	1.1	43
121	SYNDROME-DRIVEN DIVERSIFICATION IN A MEDITERRANEAN ECOSYSTEM. Evolution; International Journal of Organic Evolution, 2013, 67, 1756-1766.	1.1	42
122	Post-fire response variability in Mediterranean Basin tree species in Portugal. International Journal of Wildland Fire, 2013, 22, 919.	1.0	42
123	Bark thickness and fire regime: another twist. New Phytologist, 2017, 213, 13-15.	3.5	41
124	Pteridophyte richness in the NE Iberian Peninsula: biogeographic patterns. , 2000, 148, 195-205.		40
125	A FOREST SIMULATION MODEL FOR PREDICTING EUCALYPT DYNAMICS AND HABITAT QUALITY FOR ARBOREAL MARSUPIALS. , 1997, 7, 921-933.		39
126	Field heritability of a plant adaptation to fire in heterogeneous landscapes. Molecular Ecology, 2015, 24, 5633-5642.	2.0	39

#	Article	IF	CITATIONS
127	Global change and Mediterranean forests: current impacts and potential responses. , 2014, , 47-76.		37
128	Postâ€fire regeneration strategies in a frequently burned Cerrado community. Journal of Vegetation Science, 2021, 32, .	1.1	37
129	Fireâ€released seed dormancy ―a global synthesis. Biological Reviews, 2022, 97, 1612-1639.	4.7	37
130	What do you mean, â€~megafire'?. Global Ecology and Biogeography, 2022, 31, 1906-1922.	2.7	37
131	Regeneration of a marginal <i>Quercus suber</i> forest in the eastern Iberian Peninsula. Journal of Vegetation Science, 2006, 17, 729-738.	1.1	36
132	Genetic component of flammability variation in a <scp>M</scp> editerranean shrub. Molecular Ecology, 2014, 23, 1213-1223.	2.0	36
133	Simulating the effects of different disturbance regimes on Cortaderia selloana invasion. Biological Conservation, 2006, 128, 128-135.	1.9	35
134	Anthropogenic fires increase alien and native annual species in the Chilean coastal matorral. Diversity and Distributions, 2011, 17, 58-67.	1.9	35
135	Spatial and temporal patterns of plant functional types under simulated fire regimes. International Journal of Wildland Fire, 2007, 16, 484.	1.0	34
136	Modelling jay (Garrulus glandarius) abundance and distribution for oak regeneration assessment in Mediterranean landscapes. Forest Ecology and Management, 2008, 256, 578-584.	1.4	34
137	Leaf physiological traits in relation to resprouter ability in the Mediterranean Basin. Plant Ecology, 2011, 212, 1959-1966.	0.7	34
138	Toward a Generalizable Framework of Disturbance Ecology Through Crowdsourced Science. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	34
139	Understanding and modelling wildfire regimes: an ecological perspective. Environmental Research Letters, 2021, 16, 125008.	2.2	34
140	Fire and legume germination in a tropical savanna: ecological and historical factors. Annals of Botany, 2019, 123, 1219-1229.	1.4	33
141	Afforestation falls short as a biodiversity strategy. Science, 2020, 368, 1439-1439.	6.0	33
142	Does hairiness matter in Harare? Resolving controversy in global comparisons of plant trait responses to ecosystem disturbance. New Phytologist, 2002, 154, 7-9.	3.5	32
143	Scale matters: fire–vegetation feedbacks are needed to explain tropical tree cover at the local scale. Global Ecology and Biogeography, 2017, 26, 395-399.	2.7	30
144	Effect of fire-derived chemicals on germination and seedling growth in Mediterranean plant species. Basic and Applied Ecology, 2018, 30, 65-75.	1.2	30

#	Article	IF	CITATIONS
145	The effect of bedrock type, temperature and moisture on species richness of Pyrenean Scots pine (Pinus sylvestris L.) forests. Plant Ecology, 1995, 116, 85-92.	1.2	28
146	Modelling the response of eucalypts to fire, Brindabella Ranges, ACT. Austral Ecology, 1996, 21, 341-344.	0.7	27
147	LUCAS: an original tool for landscape modelling. Environmental Modelling and Software, 2003, 18, 429-437.	1.9	27
148	Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill. Annals of Botany, 2017, 119, 1061-1072.	1.4	27
149	Field evidence of smokeâ€stimulated seedling emergence and establishment in <scp>M</scp> editerranean <scp>B</scp> asin flora. Journal of Vegetation Science, 2014, 25, 771-777.	1.1	26
150	Shedding light through the smoke on the germination of Mediterranean Basin flora. South African Journal of Botany, 2018, 115, 244-250.	1.2	25
151	Ecology and biogeography in 3D: The case of the Australian Proteaceae. Journal of Biogeography, 2018, 45, 1469-1477.	1.4	23
152	Megafauna biogeography explains plant functional trait variability in the tropics. Global Ecology and Biogeography, 2020, 29, 1288-1298.	2.7	23
153	Postfire responses of the woody flora of Central Chile: Insights from a germination experiment. PLoS ONE, 2017, 12, e0180661.	1.1	22
154	Molecular evidence for host–parasite co-speciation between lizards and Schellackia parasites. International Journal for Parasitology, 2018, 48, 709-718.	1.3	21
155	Feedbacks in ecology and evolution. Trends in Ecology and Evolution, 2022, 37, 637-644.	4.2	21
156	The coexistence of acorns with different maturation patterns explains acorn production variability in cork oak. Oecologia, 2012, 169, 723-731.	0.9	20
157	Grasses and fire: the importance of hiding buds. New Phytologist, 2020, 226, 957-959.	3.5	20
158	Resource availability shapes fireâ€filtered savannas. Journal of Vegetation Science, 2015, 26, 395-403.	1.1	19
159	Alternative biome states challenge the modelling of species' niche shifts under climate change. Journal of Ecology, 2021, 109, 3962-3971.	1.9	18
160	Differential pollinator response underlies plant reproductive resilience after fires. Annals of Botany, 2018, 122, 961-971.	1.4	17
161	Wildfires: Opportunity for restoration?. Science, 2019, 363, 134-135.	6.0	17
162	Fire-driven behavioral response to smoke in a Mediterranean lizard. Behavioral Ecology, 2021, 32, 662-667.	1.0	17

#	Article	IF	CITATIONS
163	Fire benefits flower beetles in a Mediterranean ecosystem. PLoS ONE, 2018, 13, e0198951.	1.1	16
164	Post-Fire Management of Cork Oak Forests. Managing Forest Ecosystems, 2012, , 195-222.	0.4	16
165	The legacy of the extinct Neotropical megafauna on plants and biomes. Nature Communications, 2022, 13, 129.	5.8	16
166	Tree planting goals must account for wildfires. Science, 2022, 376, 588-589.	6.0	15
167	Bridging the Divide: Integrating Animal and Plant Paradigms to Secure the Future of Biodiversity in Fire-Prone Ecosystems. Fire, 2018, 1, 29.	1.2	13
168	Fire Recurrence and the Dynamics of the Enhanced Vegetation Index in a Mediterranean Ecosystem. International Journal of Applied Geospatial Research, 2015, 6, 18-35.	0.2	13
169	Environmental policies to cope with novel disturbance regimes–steps to address a world scientists' warning to humanity. Environmental Research Letters, 2021, 16, 021003.	2.2	12
170	Resilience of reptiles to megafires. Ecological Applications, 2022, 32, e2518.	1.8	12
171	Long-term Restoration Strategies and Techniques. , 2009, , 373-398.		11
172	Landscape analysis and simulation shell (Lass). Environmental Modelling and Software, 2006, 21, 629-639.	1.9	10
173	Combinatorial functional diversity: an information theoretical approach. Community Ecology, 2013, 14, 180-188.	0.5	10
174	Cross-regional modelling of fire occurrence in the Alps and the Mediterranean Basin. International Journal of Wildland Fire, 2020, 29, 712.	1.0	10
175	Effects of Climate and Extreme Events on Wildfire Regime and Their Ecological Impacts. Advances in Global Change Research, 2013, , 101-134.	1.6	9
176	Homage to L. M. Coutinho: fire adaptations in cerrado plants. International Journal of Wildland Fire, 2017, 26, 249.	1.0	9
177	The effect of landscape pattern on Mediterranean vegetation dynamics: A modelling approach using functional types. , 2003, 14, 365.		9
178	A shrubby resprouting pine with serotinous cones endemic to southwest China. Ecology, 2021, 102, e03282.	1.5	8
179	Potential impact of harvesting for the long-term conservation of arboreal marsupials. , 1998, 13, 103-109.		7
180	Plant responses to fire in a Mexican arid shrubland. Fire Ecology, 2019, 15, .	1.1	7

#	Article	IF	CITATIONS
181	Fire and summer temperatures interact to shape seed dormancy thresholds. Annals of Botany, 2022, 129, 809-816.	1.4	7
182	Determinants of post–fire regeneration demography in a subtropical monsoon–climate forest in Southwest China. Science of the Total Environment, 2021, 766, 142605.	3.9	6
183	Spatial and temporal variations of overstory and understory fuels in Mediterranean landscapes. Forest Ecology and Management, 2021, 490, 119094.	1.4	6
184	Fire reduces parasite load in a Mediterranean lizard. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211230.	1.2	6
185	Regeneration traits are structuring phylogenetic diversity in cork oak (<i>Quercus suber</i>) woodlands. Journal of Vegetation Science, 2009, 20, 1009-1015.	1.1	5
186	Variation in plant belowground resource allocation across heterogeneous landscapes: implications for postâ€fire resprouting. American Journal of Botany, 2020, 107, 1114-1121.	0.8	5
187	Turkish postfire action overlooks biodiversity. Science, 2022, 375, 391-391.	6.0	5
188	Wildfire debate needs science, not politics. Science, 2020, 370, 416-417.	6.0	4
189	Fire as a germination cue: A review for the Mediterranean basin. Forest Ecology and Management, 2006, 234, S176.	1.4	3
190	Scale-dependent segregation of seeders and resprouters in cork oak (Quercus suber) forests. Oecologia, 2012, 168, 503-510.	0.9	3
191	Flammable Mexico. International Journal of Wildland Fire, 2016, 25, 711.	1.0	3
192	Savanna–Forest Coexistence Across a Fire Gradient. Ecosystems, 2022, 25, 279-290.	1.6	3
193	New Reptile Hosts for Helminth Parasites in a Mediterranean Region. Journal of Herpetology, 2020, 54, 268.	0.2	3
194	Wildfires misunderstood. Frontiers in Ecology and the Environment, 2019, 17, 430-431.	1.9	2
195	No evidence of suitability of prophylactic fluids for wildfire prevention at landscape scales. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5103-5104.	3.3	2
196	Impact of roadside burning on genetic diversity in aÂhighâ€biomass invasive grass. Evolutionary Applications, 0, , .	1.5	2
197	On the Scale of the Terrestrial Recycling Pathways. Trends in Ecology and Evolution, 2021, 36, 11-12.	4.2	0
198	Fire Recurrence and the Dynamics of the Enhanced Vegetation Index in a Mediterranean Ecosystem. , 2019, , 1690-1708.		0

#	Article	IF	CITATIONS
199	Ecology in the Cradle of Humanity. BioScience, 0, , .	2.2	0