Marcus Aldén

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8872382/publications.pdf

Version: 2024-02-01

187 papers 5,163 citations

94433 37 h-index 57 g-index

187 all docs

187 docs citations

times ranked

187

2560 citing authors

#	Article	IF	Citations
1	Thermographic phosphors for thermometry: A survey of combustion applications. Progress in Energy and Combustion Science, 2011, 37, 422-461.	31.2	245
2	Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays. Optics Express, 2008, 16, 17870.	3.4	148
3	Distributed reactions in highly turbulent premixed methane/air flames. Combustion and Flame, 2015, 162, 2937-2953.	5.2	117
4	Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening. Journal of Fluid Mechanics, 2017, 815, 511-536.	3.4	114
5	A test of different rotational Raman linewidth models: Accuracy of rotational coherent antiâ€Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K. Journal of Chemical Physics, 1993, 99, 2466-2477.	3.0	103
6	FRAME: femtosecond videography for atomic and molecular dynamics. Light: Science and Applications, 2017, 6, e17045-e17045.	16.6	103
7	In-situ Measurement of Sodium and Potassium Release during Oxy-Fuel Combustion of Lignite using Laser-Induced Breakdown Spectroscopy: Effects of O ₂ and CO ₂ Concentration. Energy &	5.1	97
8	Two-photon-excited stimulated emission from atomic oxygen in flames and cold gases. Optics Letters, 1989, 14, 305.	3.3	93
9	Development and demonstration of 2D-LIF for studies of mixture preparation in SI engines. Combustion and Flame, 1994, 99, 449-457.	5.2	88
10	Structure of premixed ammoniaÂ+Âair flames at atmospheric pressure: Laser diagnostics and kinetic modeling. Combustion and Flame, 2016, 163, 370-381.	5.2	83
11	Translational, rotational, vibrational and electron temperatures of a gliding arc discharge. Optics Express, 2017, 25, 20243.	3.4	77
12	Spark ignition of turbulent methane/air mixtures revealed by time-resolved planar laser-induced fluorescence and direct numerical simulations. Proceedings of the Combustion Institute, 2000, 28, 399-405.	3.9	73
13	Post-flame gas-phase sulfation of potassium chloride. Combustion and Flame, 2013, 160, 959-969.	5.2	72
14	Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements. Journal Physics D: Applied Physics, 2014, 47, 295203.	2.8	72
15	Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: Scalar distributions and correlations. Combustion and Flame, 2017, 175, 220-236.	5.2	72
16	Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK). Applied Thermal Engineering, 2004, 24, 1619-1632.	6.0	69
17	Sodium and Potassium Released from Burning Particles of Brown Coal and Pine Wood in a Laminar Premixed Methane Flame Using Quantitative Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy, 2011, 65, 684-691.	2.2	68
18	Laser-induced breakdown flame thermometry. Combustion and Flame, 2012, 159, 3576-3582.	5.2	63

#	Article	IF	CITATIONS
19	Laser techniques in acoustically levitated micro droplets. Lab on A Chip, 2004, 4, 287-291.	6.0	62
20	Structure and Laminar Flame Speed of an Ammonia/Methane/Air Premixed Flame under Varying Pressure and Equivalence Ratio. Energy & Energy & 2021, 35, 7179-7192.	5.1	60
21	Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air. Applied Physics Letters, 2014, 105, .	3.3	58
22	Vibrational CARS thermometry in sooty flames: Quantitative evaluation of C2 absorption interference. Combustion and Flame, 1990, 82, 199-210.	5.2	53
23	Temperature measurements of combustible and non-combustible surfaces using laser induced phosphorescence. Experimental Thermal and Fluid Science, 2004, 28, 669-676.	2.7	51
24	Investigations of blue emitting phosphors for thermometry. Measurement Science and Technology, 2008, 19, 125304.	2.6	51
25	Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure. Physics of Plasmas, 2017, 24, .	1.9	50
26	Advancements in Rayleigh scattering thermometry by means of structured illumination. Proceedings of the Combustion Institute, 2015, 35, 3689-3696.	3.9	49
27	Time-resolved (kHz) 3D imaging of OH PLIF in a flame. Experiments in Fluids, 2014, 55, 1.	2.4	48
28	Rotational CARS Thermometry in Sooting Flames. Combustion Science and Technology, 1992, 81, 129-140.	2.3	47
29	Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing. Optics Letters, 2014, 39, 5321.	3.3	47
30	Optical investigation of laser-produced C2 in premixed sooty ethylene flames. Combustion and Flame, 1990, 80, 322-328.	5. 2	46
31	Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence. Optics Letters, 2008, 33, 1327.	3.3	46
32	Recent Development in Numerical Simulations and Experimental Studies of Biomass Thermochemical Conversion. Energy & Ener	5.1	45
33	Stray light suppression in spectroscopy using periodic shadowing. Optics Express, 2014, 22, 7711.	3.4	43
34	Detection of carbon atoms in flames using stimulated emission induced by two-photon laser excitation. Optics Communications, 1989, 71, 263-268.	2.1	41
35	Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence. Nature Communications, 2015, 6, 7076.	12.8	41
36	Thickness dependent variations in surface phosphor thermometry during transient combustion in an HCCI engine. Combustion and Flame, 2013, 160, 1466-1475.	5.2	40

#	Article	IF	CITATIONS
37	Combined Vibrational and Rotational CARS for Simultaneous Measurements of Temperature and Concentrations of Fuel, Oxygen, and Nitrogen. Applied Spectroscopy, 1995, 49, 188-192.	2.2	39
38	Ultra-high-speed PLIF imaging for simultaneous visualization of multiple species in turbulent flames. Optics Express, 2017, 25, 30214.	3.4	39
39	Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester. Journal Physics D: Applied Physics, 2013, 46, 135203.	2.8	38
40	Analysis of the Correlation Between Engine-Out Particulates and Local \hat{I}^{\dagger}_1 in the Lift-Off Region of a Heavy Duty Diesel Engine Using Raman Spectroscopy. SAE International Journal of Fuels and Lubricants, 0, 2, 645-660.	0.2	37
41	Strategy for PLIF single-shot HCO imaging in turbulent methane/air flames. Combustion and Flame, 2014, 161, 1566-1574.	5.2	37
42	Detection of atomic nitrogen using two-photon laser-induced stimulated emission: Application to flames. Chemical Physics Letters, 1990, 170, 406-410.	2.6	35
43	Laser-Induced Phosphorescence and the Impact of Phosphor Coating Thickness on Crank-Angle Resolved Cylinder Wall Temperatures. SAE International Journal of Engines, 0, 4, 1689-1698.	0.4	35
44	Two-pulse structured illumination imaging. Optics Letters, 2014, 39, 2584.	3.3	35
45	Multi-species PLIF study of the structures of turbulent premixed methane/air jet flames in the flamelet and thin-reaction zones regimes. Combustion and Flame, 2017, 182, 324-338.	5.2	35
46	Instantaneous 3D imaging of flame species using coded laser illumination. Proceedings of the Combustion Institute, 2017, 36, 4585-4591.	3.9	35
47	Time resolved, 3D imaging (4D) of two phase flow at a repetition rate of 1 kHz. Optics Express, 2011, 19, 21508.	3.4	34
48	Quantitative Measurement of Atomic Potassium in Plumes over Burning Solid Fuels Using Infrared-Diode Laser Spectroscopy. Energy & Samp; Fuels, 2017, 31, 2831-2837.	5.1	34
49	A novel multi-jet burner for hot flue gases of wide range of temperatures and compositions for optical diagnostics of solid fuels gasification/combustion. Review of Scientific Instruments, 2017, 88, 045104.	1.3	34
50	Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium. Applied Physics B: Lasers and Optics, 2017, 123, 278.	2.2	33
51	Investigation of turbulent premixed methane/air and hydrogen-enriched methane/air flames in a laboratory-scale gas turbine model combustor. International Journal of Hydrogen Energy, 2021, 46, 13377-13388.	7.1	32
52	Two-Dimensional Imaging of Flame Species Using Two-Photon Laser-Induced Fluorescence. Applied Spectroscopy, 1997, 51, 1229-1237.	2.2	31
53	Visualization of multi-regime turbulent combustion in swirl-stabilized lean premixed flames. Combustion and Flame, 2015, 162, 2954-2958.	5.2	31
54	Numerical simulation of ignition mode and ignition delay time of pulverized biomass particles. Combustion and Flame, 2019, 206, 400-410.	5.2	31

#	Article	IF	Citations
55	Laser-Induced Fluorescence Detection of NH3 in Flames with the Use of Two-Photon Excitation. Applied Spectroscopy, 1990, 44, 881-886.	2.2	30
56	Characterization of an AC glow-type gliding arc discharge in atmospheric air with a current-voltage lumped model. Physics of Plasmas, 2017, 24, .	1.9	30
57	Effect of turbulent flow on an atmospheric-pressure AC powered gliding arc discharge. Journal of Applied Physics, 2018, 123, .	2.5	30
58	C2Production and Excitation in Sooting Flames using Visible Laser Radiation: Implications for Diagnostics in Sooting Flames. Combustion Science and Technology, 1991, 77, 307-318.	2.3	29
59	Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames. Optics Communications, 1995, 114, 76-82.	2.1	29
60	Temporally and spectrally resolved images of single burning pulverized wheat straw particles. Fuel, 2018, 224, 434-441.	6.4	29
61	Simultaneous spatially resolved NO and NO_2 measurements using one- and two-photon laser-induced fluorescence. Optics Letters, 1985, 10, 529.	3.3	28
62	Simultaneous laser-induced fluorescence and sub-Doppler polarization spectroscopy of the CH radical. Optics Communications, 2007, 270, 347-352.	2.1	28
63	Extinction coefficient imaging of turbid media using dual structured laser illumination planar imaging. Optics Letters, 2011, 36, 1656.	3.3	28
64	Three-dimensional measurement of the local extinction coefficient in a dense spray. Measurement Science and Technology, 2011, 22, 125303.	2.6	27
65	Scheimpflug Lidar for combustion diagnostics. Optics Express, 2018, 26, 14842.	3.4	27
66	Simultaneous 36†kHz PLIF/chemiluminescence imaging of fuel, CH2O and combustion in a PPC engine. Proceedings of the Combustion Institute, 2019, 37, 4751-4758.	3.9	27
67	Clustering-based particle detection method for digital holography to detect the three-dimensional location and in-plane size of particles. Measurement Science and Technology, 2021, 32, 055205.	2.6	27
68	Transition from saliva droplets to solid aerosols in the context of COVID-19 spreading. Environmental Research, 2022, 204, 112072.	7.5	27
69	Measurement of the collision-quenched lifetime of CO molecules in a flame at atmospheric pressure. Chemical Physics Letters, 1992, 189, 211-216.	2.6	26
70	Real-Time Gas-Phase Imaging over a Pd(110) Catalyst during CO Oxidation by Means of Planar Laser-Induced Fluorescence. ACS Catalysis, 2015, 5, 2028-2034.	11.2	26
71	Analysis of in-cylinder H2O2 and HO2 distributions in an HCCI engine – Comparison of laser-diagnostic results with CFD and SRM simulations. Combustion and Flame, 2015, 162, 3131-3139.	5.2	25
72	Stabilization of a turbulent premixed flame by a plasma filament. Combustion and Flame, 2019, 208, 79-85.	5.2	25

#	Article	IF	Citations
73	Ultraviolet Absorption Cross Sections of KOH and KCl for Nonintrusive Species-Specific Quantitative Detection in Hot Flue Gases. Analytical Chemistry, 2019, 91, 4719-4726.	6.5	25
74	Stereoscopic high-speed imaging of iron microexplosions and nanoparticle-release. Optics Express, 2021, 29, 34465.	3.4	25
75	Detection of nitrogen molecules through multi-photon laser excitation and N+2 fluorescence. Optics Communications, 1988, 69, 31-36.	2.1	24
76	Optical and Mass Spectrometric Study of the Pyrolysis Gas of Wood Particles. Applied Spectroscopy, 2003, 57, 216-222.	2.2	24
77	Investigation of OH and CH2O distributions at ultra-high repetition rates by planar laser induced fluorescence imaging in highly turbulent jet flames. Fuel, 2018, 234, 1528-1540.	6.4	24
78	Quantitative SO ₂ Detection in Combustion Environments Using Broad Band Ultraviolet Absorption and Laser-Induced Fluorescence. Analytical Chemistry, 2019, 91, 10849-10855.	6.5	24
79	Detection of CO molecules using two-photon degenerate four-wave mixing (DFWM). Optics Communications, 1992, 94, 99-102.	2.1	22
80	Studies of the Combustion Process with Simultaneous Formaldehyde and OH PLIF in a Direct-Injected HCCI Engine. JSME International Journal Series B, 2005, 48, 701-707.	0.3	22
81	QUANTITATIVE MEASUREMENTS OF SPECIES AND TEMPERATURE IN A DME-AIR COUNTERFLOW DIFFUSION FLAME USING LASER DIAGNOSTIC METHODS. Combustion Science and Technology, 2006, 178, 1165-1184.	2.3	22
82	Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO. Proceedings of the Combustion Institute, 2013, 34, 3541-3548.	3.9	22
83	Investigation of formaldehyde enhancement by ozone addition in CH4/air premixed flames. Combustion and Flame, 2015, 162, 1284-1293.	5.2	22
84	Simultaneous multispectral imaging of flame species using Frequency Recognition Algorithm for Multiple Exposures (FRAME). Combustion and Flame, 2018, 192, 160-169.	5.2	22
85	Quantification of the size, 3D location and velocity of burning iron particles in premixed methane flames using high-speed digital in-line holography. Combustion and Flame, 2021, 230, 111430.	5.2	22
86	Ignition and combustion behavior of single micron-sized iron particle in hot gas flow. Combustion and Flame, 2022, 241, 112099.	5.2	22
87	Analysis of EGR Effects on the Soot Distribution in a Heavy Duty Diesel Engine using Time-Resolved Laser Induced Incandescence. SAE International Journal of Engines, 0, 3, 137-155.	0.4	21
88	Comparison of Three Schemes of Two-Photon Laser-Induced Fluorescence for CO Detection in Flames. Applied Spectroscopy, 2013, 67, 314-320.	2.2	21
89	Investigation of Hydrogen Enriched Natural Gas Flames in a SGT-700/800 Burner Using OH PLIF and Chemiluminescence Imaging. Journal of Engineering for Gas Turbines and Power, 2015, 137, .	1.1	21
90	Flame structure and burning velocity of ammonia/air turbulent premixed flames at high Karlovitz number conditions. Combustion and Flame, 2022, 238, 111943.	5.2	21

#	Article	IF	CITATIONS
91	Single-laser shot fluorescence lifetime imaging on the nanosecond timescale using a Dual Image and Modeling Evaluation algorithm. Optics Express, 2012, 20, 3043.	3.4	20
92	Characterization of ammonia two-photon laser-induced fluorescence for gas-phase diagnostics. Applied Physics B: Lasers and Optics, 2014, 115, 25-33.	2.2	20
93	In-Situ Non-intrusive Diagnostics of Toluene Removal by a Gliding Arc Discharge Using Planar Laser-Induced Fluorescence. Plasma Chemistry and Plasma Processing, 2017, 37, 433-450.	2.4	20
94	Detection of nitrogen atoms in flames using two-photon laser-induced fluorescence and investigations of photochemical effects. Applied Optics, 1991, 30, 2990.	2.1	19
95	Developments of the amplified stimulated emission technique for spatially resolved species detection in flames. Optics Communications, 1994, 108, 71-76.	2.1	19
96	Measurements of the Collisionally Quenched Lifetime of CO in Hydrocarbon Flames. Applied Spectroscopy, 1994, 48, 1118-1124.	2.2	19
97	Experimental investigations of potassium chemistry in premixed flames. Fuel, 2017, 203, 802-810.	6.4	19
98	Challenges for In-Cylinder High-Speed Two-Dimensional Laser-Induced Incandescence Measurements of Soot. SAE International Journal of Engines, 0, 4, 1607-1622.	0.4	18
99	Laser-Induced Photofragmentation Fluorescence Imaging of Alkali Compounds in Flames. Applied Spectroscopy, 2017, 71, 1289-1299.	2.2	18
100	Mid-infrared laser-induced thermal grating spectroscopy in flames. Proceedings of the Combustion Institute, 2017, 36, 4515-4523.	3.9	18
101	Transition from HCCI to PPC: Investigation of Fuel Distribution by Planar Laser Induced Fluorescence (PLIF). SAE International Journal of Engines, 0, 10, 1465-1481.	0.4	18
102	Spectrally Resolved Ultraviolet (UV) Absorption Cross-Sections of Alkali Hydroxides and Chlorides Measured in Hot Flue Gases. Applied Spectroscopy, 2018, 72, 1388-1395.	2.2	18
103	Femtosecond two-photon-excited backward lasing of atomic hydrogen in a flame. Optics Letters, 2018, 43, 1183.	3.3	18
104	A versatile, low-cost, snapshot multidimensional imaging approach based on structured light. Optics Express, 2020, 28, 9572.	3.4	18
105	Two-photon laser-induced fluorescence and stimulated emission measurements from oxygen atoms in a hydrogen/oxygen flame with picosecond resolution. Optics Communications, 1994, 113, 315-323.	2.1	17
106	Strategies for Formaldehyde Detection in Flames and Engines Using a Single-Mode Nd:YAG/OPO Laser System. Applied Spectroscopy, 2005, 59, 763-768.	2.2	17
107	Picosecond-lidar thermometry in a measurement volume surrounded by highly scattering media. Measurement Science and Technology, 2011, 22, 125302.	2.6	17
108	Temperature imaging in low-pressure flames using diode laser two-line atomic fluorescence employing a novel indium seeding technique. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	17

#	Article	IF	CITATIONS
109	Strategy for improved NH 2 detection in combustion environments using an Alexandrite laser. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 184, 235-242.	3.9	17
110	Temporal temperature measurement on burning biomass pellets using phosphor thermometry and two-line atomic fluorescence. Proceedings of the Combustion Institute, 2021, 38, 3929-3938.	3.9	17
111	Structure and scalar correlation of ammonia/air turbulent premixed flames in the distributed reaction zone regime. Combustion and Flame, 2022, 241, 112090.	5.2	17
112	Stability of alternating current gliding arcs. European Physical Journal D, 2014, 68, 1.	1.3	16
113	Formation of NO and NH in NH3-doped CH4 + N2 + O2 flame: Experiments and modelling. Combustion Flame, 2018, 194, 278-284.	and 5.2	16
114	Spatially resolved flow velocity measurements using laser-induced fluorescence from a pulsed laser. Optics Letters, 1989, 14, 9.	3.3	15
115	Stray light rejection in rotational coherent anti-Stokes Raman spectroscopy by use of a sodium-seeded flame. Applied Optics, 1998, 37, 8392.	2.1	15
116	Highly range-resolved ammonia detection using near-field picosecond differential absorption lidar. Optics Express, 2012, 20, 20688.	3.4	15
117	Large eddy simulations and rotational CARS/PIV/PLIF measurements of a lean premixed low swirl stabilized flame. Combustion and Flame, 2014, 161, 2539-2551.	5.2	15
118	Mid-Infrared Pumped Laser-Induced Thermal Grating Spectroscopy for Detection of Acetylene in the Visible Spectral Range. Applied Spectroscopy, 2016, 70, 1034-1043.	2.2	15
119	Optical characterization of methanol compression-ignition combustion in a heavy-duty engine. Proceedings of the Combustion Institute, 2021, 38, 5509-5517.	3.9	15
120	Multipoint temperature and oxygen-concentration measurements using rotational coherent anti-Stokes Raman spectroscopy. Optics Letters, 2000, 25, 1535.	3.3	14
121	Remote temperature sensing on and beneath atmospheric plasma sprayed thermal barrier coatings using thermographic phosphors. Surface and Coatings Technology, 2016, 302, 359-367.	4.8	14
122	Study of the Early Flame Development in a Spark-Ignited Lean Burn Four-Stroke Large Bore Gas Engine by Fuel Tracer PLIF. SAE International Journal of Engines, 0, 7, 928-936.	0.4	13
123	Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames. Applied Physics B: Lasers and Optics, 2014, 115, 35-43.	2.2	13
124	Numerical and experimental study of flame propagation and quenching of lean premixed turbulent low swirl flames at different Reynolds numbers. Combustion and Flame, 2015, 162, 2582-2591.	5.2	13
125	Two-dimensional OH-thermometry in reacting flows using photofragmentation laser-induced florescence. Combustion and Flame, 2016, 169, 297-306.	5.2	13
126	Simultaneous Burst Imaging of Dual Species Using Planar Laser-Induced Fluorescence at 50 kHz in Turbulent Premixed Flames. Applied Spectroscopy, 2017, 71, 1363-1367.	2.2	13

#	Article	IF	CITATIONS
127	Flame investigations of a laboratory-scale CECOST swirl burner at atmospheric pressure conditions. Fuel, 2020, 279, 118421.	6.4	13
128	Ultraviolet Absorption Cross-Sections of Ammonia at Elevated Temperatures for Nonintrusive Quantitative Detection in Combustion Environments. Applied Spectroscopy, 2021, 75, 1168-1177.	2.2	13
129	Lll–lidar: range-resolved backward picosecond laser-induced incandescence. Applied Physics B: Lasers and Optics, 2014, 115, 111-121.	2.2	12
130	Experimental apparatus with full optical access for combustion experiments with laminar flames from a single circular nozzle at elevated pressures. Review of Scientific Instruments, 2015, 86, 035115.	1.3	12
131	Spatially Resolved Temperature Measurements Above a Burning Wood Pellet Using Diode Laser-Based Two-Line Atomic Fluorescence. Applied Spectroscopy, 2018, 72, 964-970.	2.2	12
132	Simultaneous detection of OH and NO in a flame using polarization spectroscopy. Optics Communications, 1996, 124, 251-257.	2.1	11
133	Detection of Flame Radicals Using Light-Emitting Diodes. Applied Spectroscopy, 2010, 64, 1330-1334.	2.2	11
134	Air-Entrainment in Wall-Jets Using SLIPI in a Heavy-Duty Diesel Engine. SAE International Journal of Engines, 0, 5, 1684-1692.	0.4	11
135	Development and application of CN PLIF for single-shot imaging in turbulent flames. Combustion and Flame, 2015, 162, 368-374.	5.2	11
136	Re-igniting the afterglow plasma column of an AC powered gliding arc discharge in atmospheric-pressure air. Applied Physics Letters, 2018, 112, .	3.3	11
137	PLIF diagnostics of NO oxidization and OH consumption in pulsed corona discharge. Fuel, 2012, 102, 729-736.	6.4	10
138	Instantaneous imaging of ozone in a gliding arc discharge using photofragmentation laser-induced fluorescence. Journal Physics D: Applied Physics, 2018, 51, 135203.	2.8	10
139	Mid-Infrared Polarization Spectroscopy Measurements of Species Concentrations and Temperature in a Low-Pressure Flame. Applied Spectroscopy, 2019, 73, 653-664.	2.2	10
140	Suppression of unpolarized background interferences for Raman spectroscopy under continuous operation. Optics Express, 2021, 29, 1048.	3.4	10
141	Simultaneous Quantitative Detection of HCN and C2H2 in Combustion Environment Using TDLAS. Processes, 2021, 9, 2033.	2.8	10
142	Developments of laser-induced fluorescence for two-dimensional multi-species imaging in flames. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 1105-1112.	2.9	9
143	Room-Fire Characterization Using Highly Range-Resolved Picosecond Lidar Diagnostics and CFD Simulations. Combustion Science and Technology, 2013, 185, 749-765.	2.3	9
144	Single-shot photofragment imaging by structured illumination. Optics Letters, 2015, 40, 5019.	3.3	9

#	Article	IF	CITATIONS
145	Gas Temperature Measurement Using Differential Optical Absorption Spectroscopy (DOAS). Applied Spectroscopy, 2018, 72, 1014-1020.	2.2	9
146	Structures of inverse jet flames stabilized on a coaxial burner. Energy, 2020, 193, 116757.	8.8	9
147	Laser spectroscopic techniques for combustion diagnostics. Combustion Science and Technology, 1999, 149, 1-18.	2.3	8
148	Setup for microwave stimulation of a turbulent low-swirl flame. Journal Physics D: Applied Physics, 2016, 49, 185601.	2.8	8
149	Investigation of roâ€vibrational spectra of small hydrocarbons at elevated temperatures using infrared degenerate fourâ€wave mixing. Journal of Raman Spectroscopy, 2016, 47, 1130-1139.	2,5	8
150	Mid-infrared laser-induced thermal grating spectroscopy of hot water lines for flame thermometry. Proceedings of the Combustion Institute, 2021, 38, 1885-1893.	3.9	8
151	Two-photon-excited fluorescence of CO: experiments and modeling. Optics Express, 2019, 27, 25656.	3.4	8
152	Gain mechanism of femtosecond two-photon-excited lasing effect in atomic hydrogen. Optics Letters, 2019, 44, 2374.	3.3	8
153	Soot particle measurements in premixed ethylene flames using a pulsed laser method. Journal of Aerosol Science, 1988, 19, 959-962.	3.8	7
154	A library-based algorithm for evaluation of luminescent decay curves by shape recognition in time domain phosphor thermometry. Journal of Thermal Analysis and Calorimetry, 2014, 115, 545-554.	3.6	7
155	Simultaneous Visualization of Water and Hydrogen Peroxide Vapor Using Two-Photon Laser-Induced Fluorescence and Photofragmentation Laser-Induced Fluorescence. Applied Spectroscopy, 2014, 68, 1333-1341.	2.2	7
156	Online Alkali Measurement during Oxy-fuel Combustion. Energy Procedia, 2017, 120, 365-372.	1.8	7
157	Characteristics of a Gliding Arc Discharge Under the Influence of a Laminar Premixed Flame. IEEE Transactions on Plasma Science, 2019, 47, 403-409.	1.3	7
158	Fiber-based stray light suppression in spectroscopy using periodic shadowing. Optics Express, 2021, 29, 7232.	3.4	7
159	Signal-enhanced Raman spectroscopy with a multi-pass cavity for quantitative measurements of formaldehyde, major species and temperature in a one-dimensional laminar DME-air flame. Combustion and Flame, 2022, 244, 112221.	5. 2	7
160	Time-resolved spectroscopic study of photofragment fluorescence in methane/air mixtures and its diagnostic implications. Applied Physics B: Lasers and Optics, 2015, 120, 587-599.	2.2	6
161	Quantitative Imaging of Ozone Vapor Using Photofragmentation Laser-Induced Fluorescence (LIF). Applied Spectroscopy, 2017, 71, 1578-1585.	2.2	6
162	MD2-3 Quantitative in-cylinder fuel measurements in a heavy duty diesel engine using Structured Laser Illumination Planar Imaging (SLIPI)(MD: Measurement and Diagnostics, General Session Papers). The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, 2012, 2012.8, 500-505.	0.1	6

#	Article	IF	CITATIONS
163	Quantitative oxygen concentration imaging in toluene atmospheres using Dual Imaging with Modeling Evaluation. Experiments in Fluids, 2013, 54, 1.	2.4	5
164	Investigation of the effect of engine lubricant oil on remote temperature sensing using thermographic phosphors. Journal of Luminescence, 2016, 179, 568-573.	3.1	5
165	Numerical and Experimental Study on Laminar Methane/Air Premixed Flames at Varying Pressure. Energy Procedia, 2017, 105, 4970-4975.	1.8	5
166	Numerical simulation of a mixed-mode reaction front in a PPC engine. Proceedings of the Combustion Institute, 2021, 38, 5703-5711.	3.9	5
167	Time-resolved polarization lock-in filtering for background suppression in Raman spectroscopy of biomass pyrolysis. Combustion and Flame, 2021, 224, 219-224.	5.2	5
168	Investigating photomultiplier tube nonlinearities in high-speed phosphor thermometry using light emitting diode simulated decay curves. Review of Scientific Instruments, 2021, 92, 123102.	1.3	5
169	Application of Emission and Absorption Spectroscopy for Characterization of a Copper Converting Process. Applied Spectroscopy, 1988, 42, 128-133.	2.2	4
170	Two-Dimensional Two-Phase Water Detection Using a Tunable Excimer Laser. Applied Spectroscopy, 1998, 52, 343-347.	2.2	4
171	Atmospheric Pressure Acetylene Detection by UV Photo-Fragmentation and Induced C ₂ Emission. Applied Spectroscopy, 2013, 67, 66-72.	2.2	4
172	Single-shot, planar infrared imaging in flames using polarization spectroscopy. Optics Express, 2015, 23, 30414.	3.4	4
173	Dual-Laser-Induced Breakdown Thermometry via Sound Speed Measurement: A New Procedure for Improved Spatiotemporal Resolution. Sensors, 2020, 20, 2803.	3.8	4
174	Airborne Gold Nanoparticle Detection Using Photoluminescence Excited with a Continuous Wave Laser. Applied Spectroscopy, 2021, 75, 1402-1409.	2.2	4
175	Application of CARS Spectroscopy to the Detection of SO2. Applied Spectroscopy, 1988, 42, 1421-1427.	2.2	3
176	Misalignment Effects in Laser-Induced Grating Experiments. Applied Spectroscopy, 2016, 70, 2025-2028.	2.2	3
177	Simultaneous Visualization of Hydrogen Peroxide and Water Concentrations Using Photofragmentation Laser-Induced Fluorescence. Applied Spectroscopy, 2017, 71, 2118-2127.	2.2	3
178	Layered structure around an extended gliding discharge column in a methane-nitrogen mixture at high pressure. Applied Physics Letters, $2019,114,.$	3.3	3
179	Laser-Induced Fluorescence Detection of Hot Molecular Oxygen in Flames Using an Alexandrite Laser. Applied Spectroscopy, 2014, 68, 1266-1273.	2.2	2
180	Investigation of photochemical effects in flame diagnostics with picosecond photofragmentation laser-induced fluorescence. Combustion and Flame, 2016, 171, 59-68.	5.2	2

#	Article	lF	CITATIONS
181	Investigation of laserâ€induced grating spectroscopy of O ₂ for accurate temperature measurements towards applications in harsh environments. Journal of Raman Spectroscopy, 2021, 52, 1569-1581.	2.5	2
182	Investigation of Fuel and Load Flexibility in a Siemens Gas Turbine-600/700/800 Burner Under Atmospheric Pressure Conditions Using High-Speed Hydroxyl-PLIF and Hydroxyl Radical Chemiluminescence Imaging. Journal of Engineering for Gas Turbines and Power, 2021, 143, .	1.1	2
183	Cl2-2 Liquid Spray Penetration Length during Late Post Injection in an Optical Light-Duty Diesel Engine(Cl: Compression Ignition Engine Combustion, General Session Papers). The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, 2012. 2012.8. 206-211.	0.1	1
184	Non-thermal gliding arc discharge assisted turbulent combustion (up to 80 kW) at extended conditions: phenomenological analysis. Combustion Science and Technology, 0, , 1-16.	2.3	1
185	Spatially resolved flow velocity measurements using laser-induced fluorescence from a pulsed laser. Journal of Aerosol Science, 1988, 19, 963-965.	3.8	0
186	Application of a Prism Dye Laser for Enhanced Single-Shot CARS Intensities. Applied Spectroscopy, 1993, 47, 857-859.	2.2	0
187	Special Issue in Memory of Professor Mário Costa. Energy & Energy & 2021, 35, 6935-6939.	5.1	0