Jinlin He

List of Publications by Citations

Source: https://exaly.com/author-pdf/8872341/jinlin-he-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

91 2,348 30 42 g-index

95 2,667 5.5 cext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
91	Geometry induced sequence of nanoscale Frank-Kasper and quasicrystal mesophases in giant surfactants. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 14195-14200	11.5	155
90	Synthesis and Micellization of pH/Temperature-Responsive Double-Hydrophilic Diblock Copolymers Polyphosphoester-block-poly[2-(dimethylamino)ethyl methacrylate] Prepared via ROP and ATRP. <i>Macromolecules</i> , 2010 , 43, 4771-4781	5.5	93
89	Biocompatible and pH-responsive triblock copolymer mPEG-b-PCL-b-PDMAEMA: Synthesis, self-assembly, and application. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 1079-1091	2.5	92
88	A new pathway towards polymer modified cellulose nanocrystals via a grafting ontolprocess for drug delivery. <i>Polymer Chemistry</i> , 2015 , 6, 4206-4209	4.9	69
87	A polyphosphoester-conjugated camptothecin prodrug with disulfide linkage for potent reduction-triggered drug delivery. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 4922-4932	7.3	64
86	Biocompatible and acid-cleavable poly(Laprolactone)-acetal-poly(ethylene glycol)-acetal-poly(Laprolactone) triblock copolymers: synthesis, characterization and pH-triggered doxorubicin delivery. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 6596-6607	7.3	57
85	Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators. <i>Electrochimica Acta</i> , 2015 , 167, 396-403	6.7	53
84	Effects of fluorinated SiO2 nanoparticles on the thermal and electrochemical properties of PP nonwoven/PVdF-HFP composite separator for Li-ion batteries. <i>Journal of Membrane Science</i> , 2014 , 455, 368-374	9.6	49
83	Galactosylated reduction and pH dual-responsive triblock terpolymer Gal-PEEP-a-PCL-ss-PDMAEMA: a multifunctional carrier for the targeted and simultaneous delivery of doxorubicin and DNA. <i>Polymer Chemistry</i> , 2014 , 5, 5124-5138	4.9	47
82	Synthesis of an acid-labile polymeric prodrug DOX-acetal-PEG-acetal-DOX with high drug loading content for pH-triggered intracellular drug release. <i>Polymer Chemistry</i> , 2015 , 6, 4809-4818	4.9	46
81	Synthesis and characterization of amphiphilic fluorinated pentablock copolymers based on Pluronic F127. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 3029-3041	2.5	45
80	Fluorinated polyhedral oligomeric silsesquioxane-based shape amphiphiles: molecular design, topological variation, and facile synthesis. <i>Polymer Chemistry</i> , 2012 , 3, 2112	4.9	44
79	A pH-sensitive and biodegradable supramolecular hydrogel constructed from a PEGylated polyphosphoester-doxorubicin prodrug and Eyclodextrin. <i>Polymer Chemistry</i> , 2015 , 6, 5009-5014	4.9	40
78	Polyphosphoester-Camptothecin Prodrug with Reduction-Response Prepared via Michael Addition Polymerization and Click Reaction. <i>ACS Applied Materials & Discrete Materials & Disc</i>	9.5	39
77	Synthesis and characterization of a new multifunctional polymeric prodrug paclitaxelpolyphosphoesterfolic acid for targeted drug delivery. <i>Polymer Chemistry</i> , 2013 , 4, 4515	4.9	39
76	Novel fluoroalkyl end-capped amphiphilic diblock copolymers with pH/temperature response and self-assembly behavior. <i>Langmuir</i> , 2008 , 24, 4647-54	4	39
75	Polymeric prodrugs conjugated with reduction-sensitive dextrandamptothecin and pH-responsive dextrandoxorubicin: an effective combinatorial drug delivery platform for cancer therapy. <i>Polymer Chemistry</i> , 2016 , 7, 4198-4212	4.9	39

(2018-2015)

74	Core cross-linked polyphosphoester micelles with folate-targeted and acid-cleavable features for pH-triggered drug delivery. <i>Polymer Chemistry</i> , 2015 , 6, 3205-3216	4.9	38
73	Synthesis and characterization of amphiphilic poly(e-caprolactone)-b-polyphosphoester diblock copolymers bearing multifunctional pendant groups. <i>Polymer</i> , 2012 , 53, 2854-2863	3.9	37
72	Bi-phase fire-resistant polyethylenimine/graphene oxide/melanin coatings using layer by layer assembly technique: Smoke suppression and thermal stability of flexible polyurethane foams. <i>Polymer</i> , 2019 , 170, 65-75	3.9	36
71	Adjustable hardness of hydrogel for promoting vascularization and maintaining stemness of stem cells in skin flap regeneration. <i>Applied Materials Today</i> , 2018 , 13, 54-63	6.6	35
70	Synthesis of PEGylated Ferrocene Nanoconjugates as the Radiosensitizer of Cancer Cells. <i>Bioconjugate Chemistry</i> , 2016 , 27, 1518-24	6.3	35
69	Dual-Responsive Polyphosphoester-Doxorubicin Prodrug Containing a Diselenide Bond: Synthesis, Characterization, and Drug Delivery. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 2443-2452	5.5	34
68	Facile preparation of pH-responsive PEGylated prodrugs for activated intracellular drug delivery. <i>Chinese Chemical Letters</i> , 2019 , 30, 2027-2031	8.1	33
67	Photodynamic therapy-triggered on-demand drug release from ROS-responsive core-cross-linked micelles toward synergistic anti-cancer treatment. <i>Nano Research</i> , 2019 , 12, 999-1008	10	33
66	Facile approach for DNA encapsulation in functional polyion complex for triggered intracellular gene delivery: design, synthesis, and mechanism. <i>Langmuir</i> , 2009 , 25, 5199-208	4	33
65	Development of a thermosensitive protein conjugated nanogel for enhanced radio-chemotherapy of cancer. <i>Nanoscale</i> , 2018 , 10, 13976-13985	7.7	33
64	Precision Synthesis and Distinct Assembly of Double-Chain Giant Surfactant Regioisomers. <i>Macromolecules</i> , 2017 , 50, 3943-3953	5.5	31
63	Folate-Conjugated Polyphosphoester with Reversible Cross-Linkage and Reduction Sensitivity for Drug Delivery. <i>ACS Applied Materials & Drug Delivery</i> . <i>ACS Applied Materials & Drug Delivery</i> .	9.5	31
62	Multifunctional Polymeric Prodrug with Simultaneous Conjugating Camptothecin and Doxorubicin for pH/Reduction Dual-Responsive Drug Delivery. <i>ACS Applied Materials & Delivery and State S</i>) ⁹ 8748	30
61	Galactosylated biodegradable poly(Etaprolactone-co-phosphoester) random copolymer nanoparticles for potent hepatoma-targeting delivery of doxorubicin. <i>Polymer Chemistry</i> , 2014 , 5, 3443-3	3 432	30
60	Precise modular synthesis and a structureproperty study of acid-cleavable star-block copolymers for pH-triggered drug delivery. <i>Polymer Chemistry</i> , 2015 , 6, 1553-1566	4.9	29
59	Fabrication of a novel sandwich-like composite separator with enhanced physical and electrochemical performances for lithium-ion battery. <i>Journal of Power Sources</i> , 2015 , 290, 53-60	8.9	29
58	Rapidly in situ forming polyphosphoester-based hydrogels for injectable drug delivery carriers. <i>Soft Matter</i> , 2012 , 8, 6033	3.6	29
57	Fabrication of Cyclic Brush Copolymers with Heterogeneous Amphiphilic Polymer Brushes for Controlled Drug Release. <i>Macromolecules</i> , 2018 , 51, 7672-7679	5.5	28

56	Cross-linked porous polymer separator using vinyl-modified aluminum oxide nanoparticles as cross-linker for lithium-ion batteries. <i>Electrochimica Acta</i> , 2019 , 307, 495-502	6.7	27
55	Synthesis and physicochemical characterization of biodegradable and pH-responsive hydrogels based on polyphosphoester for protein delivery. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 1919-1930	2.5	27
54	Injectable supramolecular hydrogels fabricated from PEGylated doxorubicin prodrug and Eyclodextrin for pH-triggered drug delivery. <i>RSC Advances</i> , 2015 , 5, 54658-54666	3.7	26
53	Synthesis of an acid-cleavable and fluorescent amphiphilic block copolymer as a combined delivery vector of DNA and doxorubicin. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 4237-4249	7.3	26
52	Dual-responsive core-crosslinked polyphosphoester-based nanoparticles for pH/redox-triggered anticancer drug delivery. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 3771-3782	7.3	25
51	Precise modulation of molecular weight distribution for structural engineering. <i>Chemical Science</i> , 2019 , 10, 10698-10705	9.4	25
50	Janus [3:5] Polystyrene P olydimethylsiloxane Star Polymers with a Cubic Core. <i>Macromolecules</i> , 2018 , 51, 419-427	5.5	24
49	Fabrication of Thermosensitive Cyclic Brush Copolymer with Enhanced Therapeutic Efficacy for Anticancer Drug Delivery. <i>Macromolecular Rapid Communications</i> , 2018 , 39, 1700744	4.8	23
48	Impaired CXCR4 expression and cell engraftment of bone marrow-derived cells from aged atherogenic mice. <i>Atherosclerosis</i> , 2011 , 219, 92-9	3.1	22
47	Preparation of Polymeric Prodrug Paclitaxel-Poly(lactic acid)-b-Polyisobutylene and Its Application in Coatings of a Drug Eluting Stent. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 11263-71	9.5	21
46	A synergistic polyphosphoester-based co-delivery system of the anticancer drug doxorubicin and the tumor suppressor gene p53 for lung cancer therapy. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 3262-	-32 ³ 73	21
45	One-Pot Synthesis of pH/Redox Responsive Polymeric Prodrug and Fabrication of Shell Cross-Linked Prodrug Micelles for Antitumor Drug Transportation. <i>Bioconjugate Chemistry</i> , 2018 , 29, 2806-2817	6.3	21
44	Polymer-Doxorubicin Prodrug with Biocompatibility, pH Response, and Main Chain Breakability Prepared by Catalyst-Free Click Reaction. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 2307-2315	5.5	20
43	Multicompartment morphologies self-assembled from fluorinated ABC triblock terpolymers: the effects of flexible and rigid hydrophobic moieties. <i>Polymer Chemistry</i> , 2016 , 7, 1773-1781	4.9	20
42	A biodegradable polyphosphoester-functionalized poly(disulfide) nanocarrier for reduction-triggered intracellular drug delivery. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 7263-7273	7.3	20
41	Improved synthesis of fullerynes by Fisher esterification for modular and efficient construction of fullerene polymers with high fullerene functionality. <i>Polymer</i> , 2011 , 52, 4221-4226	3.9	20
40	Rapid and Efficient Anionic Synthesis of Well-Defined Eight-Arm Star Polymers Using OctavinylPOSS and Poly(styryl)lithium. <i>Macromolecules</i> , 2012 , 45, 8571-8579	5.5	19
39	A porous cross-linked gel polymer electrolyte separator for lithium-ion batteries prepared by using zinc oxide nanoparticle as a foaming agent and filler. <i>Electrochimica Acta</i> , 2018 , 292, 769-778	6.7	19

(2013-2019)

Fabrication of Polymeric Ferrocene Nanoparticles for Electrochemical Aptasensing of Protein with Target-Catalyzed Hairpin Assembly. <i>Analytical Chemistry</i> , 2019 , 91, 9940-9945	7.8	18
Anionic synthesis of a Elickable Emiddle-chain azide functionalized polystyrene and its application in shape amphiphiles. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2013 , 31, 71-82	3.5	18
Magnetic DNA vector constructed from PDMAEMA polycation and PEGylated brush-type polyanion with cross-linkable shell. <i>Langmuir</i> , 2012 , 28, 6448-60	4	18
Mixed [2 : 6] hetero-arm star polymers based on Janus POSS with precisely defined arm distribution. <i>Polymer Chemistry</i> , 2016 , 7, 2381-2388	4.9	17
Effect of groups at #position and side-chain structure of comonomers on surface free energy and surface reorganization of fluorinated methacrylate copolymer. <i>Polymer</i> , 2017 , 114, 79-87	3.9	16
A fully degradable and photocrosslinked polysaccharide-polyphosphate hydrogel for tissue engineering. <i>Carbohydrate Polymers</i> , 2019 , 225, 115257	10.3	16
Synthesis and characterization of novel brush copolymers with biodegradable polyphosphoester side chains for gene delivery. <i>Journal of Polymer Science Part A</i> , 2013 , 51, 2150-2160	2.5	16
Influence of Regio-Configuration on the Phase Diagrams of Double-Chain Giant Surfactants. <i>Macromolecules</i> , 2018 , 51, 1110-1119	5.5	15
Efficient Click Synthesis of a Protonized and Reduction-Sensitive Amphiphilic Small-Molecule Prodrug Containing Camptothecin and Gemcitabine for a Drug Self-Delivery System. <i>Molecular Pharmaceutics</i> , 2019 , 16, 3770-3779	5.6	15
Synthesis of amphiphilic cationic copolymers poly[2-(methacryloyloxy)ethyl trimethylammonium chloride-co-stearyl methacrylate] and their self-assembly behavior in water and water-ethanol mixtures. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 4670-4684	2.5	15
Zwitterionic shielded polymeric prodrug with folate-targeting and pH responsiveness for drug delivery. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 786-795	7.3	14
A separator based on cross-linked nano-SiO2 and cellulose acetate for lithium-ion batteries. <i>Electrochimica Acta</i> , 2020 , 334, 135585	6.7	14
Injectable hydrogels by inclusion complexation between a three-armed star copolymer (mPEG-acetal-PCL-acetal-)3 and Eyclodextrin for pH-triggered drug delivery. <i>RSC Advances</i> , 2016 , 6, 40858-40868	3.7	14
Surface energy and surface reorganization of perfluorohexylethyl methacrylate/n-alkyl (meth)acrylate copolymers. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2016 , 502, 159-167	5.1	13
A twin-tailed tadpole-shaped amphiphilic copolymer of poly(ethylene glycol) and cyclic poly(Etaprolactone): synthesis, self-assembly and biomedical applications. <i>Polymer Chemistry</i> , 2018 , 9, 4343-4353	4.9	13
Discrete Giant Polymeric Chains Based on Nanosized Monomers. <i>Jacs Au</i> , 2021 , 1, 79-86		13
Synthesis of pH-responsive amphiphilic diblock copolymers containing polyisobutylene via oxyanion-initiated polymerization and their multiple self-assembly morphologies. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2013 , 31, 218-231	3.5	11
Preparation and self-assembly of double hydrophilic poly(ethylethylene phosphate)-block-poly[2-(succinyloxy)ethyl methacrylate] diblock copolymers for drug delivery. <i>Reactive and Functional Polymers</i> , 2013 , 73, 579-587	4.6	10
	Anionic synthesis of a Elickable Iniddle-chain azidefunctionalized polystyrene and its application in shape amphiphiles. Chinese Journal of Polymer Science (English Edition), 2013, 31, 71-82 Magnetic DNA vector constructed from PDMAEMA polycation and PEGylated brush-type polyanion with cross-linkable shell. Langmuli, 2012, 28, 6448-60 Mixed [2:6] hetero-arm star polymers based on Janus POSS with precisely defined arm distribution. Polymer Chemistry, 2016, 7, 2381-2388 Effect of groups at Biposition and side-chain structure of comonomers on surface free energy and surface reorganization of Fluorinated methacrylate copolymer. Polymer, 2017, 114, 79-87 A fully degradable and photocrosslinked polysaccharide-polyphosphate hydrogel for tissue engineering. Carbohydrate Polymers, 2019, 225, 115257 Synthesis and characterization of novel brush copolymers with biodegradable polyphosphosester side chains for gene delivery. Journal of Polymer Science Part A, 2013, 51, 2150-2160 Influence of Regio-Configuration on the Phase Diagrams of Double-Chain Glant Surfactants. Macromolecules, 2018, 51, 1110-1119 Efficient Click Synthesis of a Protonized and Reduction-Sensitive Amphiphilic Small-Molecule Prodrug Containing Camptothecin and Gemcitabine for a Drug Self-Delivery System. Molecular Pharmaceutics, 2019, 16, 3770-3779 Synthesis of amphiphilic cationic copolymers poly[2-(methacryloyloxy)ethyl trimethylammonium chloride-co-stearyl methacrylate] and their self-assembly behavior in water and water-ethanol mixtures. Journal of Polymer Science Part A, 2009, 47, 4670-4684 Zwitterionic shielded polymeric prodrug with folate-targeting and pH responsiveness for drug delivery. Journal of Materials Chemistry B, 2019, 7, 786-795 A separator based on cross-linked nano-SiO2 and cellulose acetate for lithium-ion batteries. Electrochimica Acto, 2020, 334, 135585 Injectable hydrogels by inclusion complexation between a three-armed star copolymer (mPEG-acetal-PCL-acetal-)3 and Etyclodextrin for pH-triggered drug delivery. RSC Advanc	Anionic synthesis of a BilckableIniddle-chain azidefunctionalized polystyrene and its application in shape amphiphiles. Chinese Journal of Polymer Science (English Edition), 2013, 31, 71-82 Magnetic DNA vector constructed from PDMAEMA polycation and PEGylated brush-type polyanion with cross-linkable shell. Langmuir, 2012, 28, 6448-60 Mixed [2:6] hetero-arm star polymers based on Janus POSS with precisely defined arm distribution. Polymer Chemistry, 2016, 7, 2381-2388 Effect of groups at Eposition and side-chain structure of comonomers on surface free energy and surface reorganization of fluorinated methacrylate copolymer. Polymer, 2017, 114, 79-87 A fully degradable and photocrosslinked polysaccharide-polyphosphate hydrogel for tissue engineering. Carbohydrate Polymers, 2019, 225, 115257 Synthesis and characterization of novel brush copolymers with biodegradable polyphosphoester side chains for gene delivery. Journal of Polymer Science Part A, 2013, 51, 2150-2160 25 Influence of Regio-Configuration on the Phase Diagrams of Double-Chain Giant Surfactants. Macromolecules, 2018, 51, 1110-1119 Efficient Click Synthesis of a Protonized and Reduction-Sensitive Amphiphilic Small-Molecule Prodrug Containing Camptothecin and Gemcitabine for a Drug Self-Delivery System. Molecular Pharmaceutics, 2019, 16, 3770-3779 Synthesis of amphiphilic scinonic copolymers poly[2-(methacryloyloxy)ethyl trimethylammonium chloride-co-stearyl methacrylate] and their self-assembly behavior in water and water-ethanol mixtures. Journal of Polymer Science Part A, 2009, 47, 4670-4684 Zwitterionic shielded polymeric prodrug with folate-targeting and pH responsiveness for drug delivery. Journal of Materials Chemistry B, 2019, 7, 786-795 A separator based on cross-linked nano-SiO2 and cellulose acetate for lithium-ion batteries. Electrochimica Acta, 2020, 334, 135585 Injectable hydrogels by inclusion complexation between a three-armed star copolymer (mPEG-acetal-PCL-acetal-P). 3 and bryclodextrin for pH-triggered drug delivery. RSC Ad

20	Low-Dose X-ray-Responsive Diselenide Nanocarriers for Effective Delivery of Anticancer Agents. <i>ACS Applied Materials & Delivery of Anticancer Agents</i> . 12, 43398-43407	9.5	10
19	Well-defined poly[(dimethylamimo)ethyl methacrylate]-b-poly(fluoroalkyl methacrylate) diblock copolymers: Effects of different fluoroalkyl groups on the solution properties. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 2702-2712	2.5	9
18	Effect of sequence structure on wetting behaviors of fluorinated methacrylate polymers based on perfluorohexylethyl methacrylate and stearyl acrylate. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2017 , 35, 1061-1072	3.5	8
17	Kinetics of styrene miniemulsion polymerization using poly[(stearyl methacrylate-co-(N,N-dimethylamino)ethyl methacrylate] as surfactant. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2010 , 360, 190-197	5.1	8
16	Glucose-Sensitive Polyphosphoester Diblock Copolymer for an Insulin Delivery System. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 1553-1564	5.5	7
15	Synthesis and characterization of a biodegradable ABC triblock terpolymer as co-delivery carrier of doxorubicin and DNA. <i>Journal of Polymer Science Part A</i> , 2014 , 52, 3005-3016	2.5	7
14	Facile construction of noncovalent graft copolymers with triple stimuli-responsiveness for triggered drug delivery. <i>Polymer Chemistry</i> , 2021 , 12, 2152-2164	4.9	7
13	Fabrication of aminated poly(glycidyl methacrylate)-based polymers for co-delivery of anticancer drugs and the p53 gene. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 9555-9565	7.3	6
12	CD147 Monoclonal Antibody Targeted Reduction-Responsive Camptothecin Polyphosphoester Nanomedicine for Drug Delivery in Hepatocellular Carcinoma Cells <i>ACS Applied Bio Materials</i> , 2021 , 4, 4422-4431	4.1	5
11	Versatile Construction of Single-Tailed Giant Surfactants with Hydrophobic Poly(Etaprolactone) Tail and Hydrophilic POSS Head. <i>Polymers</i> , 2019 , 11,	4.5	3
10	Folate-conjugated biodegradable core cross-linked polyphosphoester micelles for targeted and pH-triggered drug delivery. <i>Journal of Controlled Release</i> , 2015 , 213, e86-7	11.7	2
9	Synthesis of PEGylated brush-type copolymers for a plurality of plug-and-play functions. <i>RSC Advances</i> , 2015 , 5, 50019-50023	3.7	2
8	Synthesis and Characterization of PEGylated Brush-type Polycation Modified with Galactosamine. <i>Acta Chimica Sinica</i> , 2014 , 72, 569	3.3	2
7	Phase Behaviors of Multi-tailed B2AB2-Type Regio-isomeric Giant Surfactants at the Columnar-Spherical Boundary Chinese Journal of Chemistry, 2021 , 39, 3261	4.9	2
6	APPLICATIONS OF LLICKLCHEMISTRY IN SYNTHESIS OF TOPOLOGICAL POLYMERS. <i>Acta Polymerica Sinica</i> , 2013 , 013, 300-319		1
5	Novel pH-responsive polyphosphoester-based hydrogels with fast gelation. <i>Journal of Controlled Release</i> , 2011 , 152 Suppl 1, e232-3	11.7	O
4	Glucose-Sensitive Core-Cross-Linked Nanoparticles Constructed with Polyphosphoester Diblock Copolymer for Controlling Insulin Delivery. <i>Bioconjugate Chemistry</i> , 2021 , 32, 2095-2107	6.3	O
3	A Codelivery System of Anticancer Drug Doxorubicin and Tumor-Suppressor Gene p53 Based on Polyphosphoester for Lung Cancer Therapy. <i>Biomaterial Engineering</i> , 2021 , 1-17	0.3	

LIST OF PUBLICATIONS

- Preparation and Characterization of Microgels and Hydrogels Based on Functional Polyphosphoester Diblock Copolymers. *Acta Polymerica Sinica*, **2014**, 014, 122-130
- A Codelivery System of Anticancer Drug Doxorubicin and Tumor-Suppressor Gene p53 Based on Polyphosphoester for Lung Cancer Therapy. *Biomaterial Engineering*, **2022**, 505-521

0.3