## Himanshu Pathak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8872138/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Nutrient Budget in Indian Agriculture During 1970–2018: Assessing Inputs and Outputs of Nitrogen,<br>Phosphorus, and Potassium. Journal of Soil Science and Plant Nutrition, 2022, 22, 1832-1845.                                             | 3.4 | 11        |
| 2  | Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India.<br>Frontiers in Sustainable Food Systems, 2021, 5, .                                                                                               | 3.9 | 29        |
| 3  | Plummeting global warming potential by chemicals interventions in irrigated rice: A lab to field assessment. Agriculture, Ecosystems and Environment, 2021, 319, 107545.                                                                      | 5.3 | 14        |
| 4  | Molecular and ecological perspectives of nitrous oxide producing microbial communities in agro-ecosystems. Reviews in Environmental Science and Biotechnology, 2020, 19, 717-750.                                                             | 8.1 | 41        |
| 5  | Global warming impacts of nitrogen use in agriculture: an assessment for India since 1960. Carbon<br>Management, 2020, 11, 291-301.                                                                                                           | 2.4 | 29        |
| 6  | RuBisCo activase—a catalytic chaperone involved in modulating the RuBisCo activity and heat<br>stress-tolerance in wheat. Journal of Plant Biochemistry and Biotechnology, 2019, 28, 63-75.                                                   | 1.7 | 26        |
| 7  | Nitrous oxide emission and mitigation from maize–wheat rotation in the upper Indo-Gangetic Plains.<br>Carbon Management, 2019, 10, 489-499.                                                                                                   | 2.4 | 24        |
| 8  | Ecosystem services in different agro-climatic zones in eastern India: impact of land use and land cover change. Environmental Monitoring and Assessment, 2019, 191, 98.                                                                       | 2.7 | 24        |
| 9  | Nitric oxide triggered defense network in wheat: Augmenting tolerance and grain-quality related<br>traits under heat-induced oxidative damage. Environmental and Experimental Botany, 2019, 158, 189-204.                                     | 4.2 | 18        |
| 10 | Effects of water deficit stress on agronomic and physiological responses of rice and greenhouse gas<br>emission from rice soil under elevated atmospheric CO2. Science of the Total Environment, 2019, 650,<br>2032-2050.                     | 8.0 | 75        |
| 11 | Nitrogen Effects on Productivity and Soil Properties in Conventional and Zero Tilled Wheat with<br>Different Residue Management. Proceedings of the National Academy of Sciences India Section B -<br>Biological Sciences, 2019, 89, 123-135. | 1.0 | 9         |
| 12 | Impact of Elevated CO2 and Temperature on Brown Planthopper Population in Rice Ecosystem.<br>Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2018, 88, 57-64.                                          | 1.0 | 14        |
| 13 | Soil microbial responses as influenced by Jatropha plantation under rainfed condition in north-west<br>India. Agroforestry Systems, 2018, 92, 47-58.                                                                                          | 2.0 | 1         |
| 14 | Weed and Nitrogen Management Effects on Weed Infestation and Crop Productivity of<br>Wheat–Mungbean Sequence in Conventional and Conservation Tillage Practices. Agricultural<br>Research, 2017, 6, 33-46.                                    | 1.7 | 29        |
| 15 | Simulation of leaf blast infection in tropical rice agro-ecology under climate change scenario.<br>Climatic Change, 2017, 142, 155-167.                                                                                                       | 3.6 | 17        |
| 16 | Elevated carbon dioxide level along with phosphorus application and cyanobacterial inoculation<br>enhances nitrogen fixation and uptake in cowpea crop. Archives of Agronomy and Soil Science, 2017,<br>63, 1927-1937.                        | 2.6 | 27        |
| 17 | Greenhouse gases emission, soil organic carbon and wheat yield as affected by tillage systems and nitrogen management practices. Archives of Agronomy and Soil Science, 2017, 63, 1644-1660.                                                  | 2.6 | 44        |
| 18 | Global temperature change potential of nitrogen use in agriculture: A 50-year assessment. Scientific<br>Reports, 2017, 7, 44928.                                                                                                              | 3.3 | 81        |

HIMANSHU PATHAK

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Biochemical Defense Response: Characterizing the Plasticity of Source and Sink in Spring Wheat under<br>Terminal Heat Stress. Frontiers in Plant Science, 2017, 8, 1603.                                                                       | 3.6 | 28        |
| 20 | Identification of Putative RuBisCo Activase (TaRca1)—The Catalytic Chaperone Regulating Carbon<br>Assimilatory Pathway in Wheat (Triticum aestivum) under the Heat Stress. Frontiers in Plant Science,<br>2016, 7, 986.                        | 3.6 | 38        |
| 21 | SSH Analysis of Endosperm Transcripts and Characterization of Heat Stress Regulated Expressed Sequence Tags in Bread Wheat. Frontiers in Plant Science, 2016, 7, 1230.                                                                         | 3.6 | 14        |
| 22 | Global nitrogen budgets in cereals: A 50-year assessment for maize, rice and wheat production systems. Scientific Reports, 2016, 6, 19355.                                                                                                     | 3.3 | 343       |
| 23 | Mitigation of greenhouse gas emission from rice–wheat system of the Indo-Gangetic plains: Through<br>tillage, irrigation and fertilizer management. Agriculture, Ecosystems and Environment, 2016, 230, 1-9.                                   | 5.3 | 136       |
| 24 | Effect of Sowing Date and Cultivars on Aphid Infestation in Wheat with Climate Change Adaptation<br>Perspective. Proceedings of the National Academy of Sciences India Section B - Biological Sciences,<br>2016, 86, 315-323.                  | 1.0 | 6         |
| 25 | The Stress of Suicide: Temporal and Spatial Expression of Putative Heat Shock Protein 70 Protect the<br>Cells from Heat Injury in Wheat (Triticum aestivum). Journal of Plant Growth Regulation, 2016, 35,<br>65-82.                           | 5.1 | 12        |
| 26 | Growth, yield and quality of maize with elevated atmospheric carbon dioxide and temperature in north–west India. Agriculture, Ecosystems and Environment, 2016, 218, 66-72.                                                                    | 5.3 | 69        |
| 27 | Greenhouse gases emission from soils under major crops in Northwest India. Science of the Total<br>Environment, 2016, 542, 551-561.                                                                                                            | 8.0 | 61        |
| 28 | Greenhouse Gas Emissions and Mitigation in Agriculture. , 2015, 5, 357-358.                                                                                                                                                                    |     | 3         |
| 29 | Calcium triggers protein kinases-induced signal transduction for augmenting the thermotolerance of<br>developing wheat (Triticum aestivum) grain under the heat stress. Journal of Plant Biochemistry and<br>Biotechnology, 2015, 24, 441-452. | 1.7 | 29        |
| 30 | Harnessing Next Generation Sequencing in Climate Change: RNA-Seq Analysis of Heat Stress-Responsive<br>Genes in Wheat ( <i>Triticum aestivum</i> L.). OMICS A Journal of Integrative Biology, 2015, 19, 632-647.                               | 2.0 | 50        |
| 31 | Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.). Functional and Integrative Genomics, 2015, 15, 323-348.                                                                                                         | 3.5 | 121       |
| 32 | Ascorbic acid at pre-anthesis modulate the thermotolerance level of wheat (Triticum aestivum) pollen under heat stress. Journal of Plant Biochemistry and Biotechnology, 2014, 23, 293-306.                                                    | 1.7 | 28        |
| 33 | Mitigation of greenhouse gas emission with system of rice intensification in the Indo-Gangetic Plains.<br>Paddy and Water Environment, 2014, 12, 355-363.                                                                                      | 1.8 | 76        |
| 34 | Measurement of Ambient Ammonia over the National Capital Region of Delhi, India. Mapan - Journal of<br>Metrology Society of India, 2014, 29, 165-173.                                                                                          | 1.5 | 14        |
| 35 | Ammonia Emission from Rice–Wheat Cropping System in Subtropical Soil of India. Agricultural<br>Research, 2014, 3, 175-180                                                                                                                      | 1.7 | 7         |
| 36 | Conservation agriculture in an irrigated cotton–wheat system of the western Indo-Gangetic Plains:<br>Crop and water productivity and economic profitability. Field Crops Research, 2014, 158, 24-33.                                           | 5.1 | 115       |

HIMANSHU PATHAK

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Exogenous application of putrescine at pre-anthesis enhances the thermotolerance of wheat<br>(Triticum aestivum L.). Indian Journal of Biochemistry and Biophysics, 2014, 51, 396-406.                                          | 0.0 | 15        |
| 38 | Methane and nitrous oxide emissions from Indian rice paddies, agricultural soils and crop residue burning. , 2013, 3, 196-211.                                                                                                  |     | 57        |
| 39 | Impacts of conservation agriculture on total soil organic carbon retention potential under an<br>irrigated agro-ecosystem of the western Indo-Gangetic Plains. European Journal of Agronomy, 2013, 51,<br>34-42.                | 4.1 | 101       |
| 40 | Differential expression of heat shock protein and alteration in osmolyte accumulation under heat stress in wheat. Journal of Plant Biochemistry and Biotechnology, 2013, 22, 16-26.                                             | 1.7 | 30        |
| 41 | Dry direct-seeding of rice for mitigating greenhouse gas emission: field experimentation and simulation. Paddy and Water Environment, 2013, 11, 593-601.                                                                        | 1.8 | 68        |
| 42 | Agriculture and the United Nations Framework Convention on Climate Change. , 2013, 3, 313-314.                                                                                                                                  |     | 0         |
| 43 | Characterization of differentially expressed stress-associated proteins in starch granule<br>development under heat stress in wheat (Triticum aestivum L.). Indian Journal of Biochemistry and<br>Biophysics, 2013, 50, 126-38. | 0.0 | 25        |
| 44 | Ammonia emission from subtropical crop land area in India. Asia-Pacific Journal of Atmospheric<br>Sciences, 2012, 48, 275-281.                                                                                                  | 2.3 | 17        |
| 45 | Greenhouse gas mitigation in rice–wheat system with leaf color chart-based urea application.<br>Environmental Monitoring and Assessment, 2012, 184, 3095-3107.                                                                  | 2.7 | 71        |
| 46 | Potential and cost of carbon sequestration in Indian agriculture: Estimates from long-term field experiments. Field Crops Research, 2011, 120, 102-111.                                                                         | 5.1 | 79        |
| 47 | Tillage and Crop Establishment Affects Sustainability of South Asian Rice–Wheat System. Agronomy<br>Journal, 2011, 103, 961-971.                                                                                                | 1.8 | 175       |
| 48 | Impact of resourceâ€conserving technologies on productivity and greenhouse gas emissions in the riceâ€wheat system. , 2011, 1, 261-277.                                                                                         |     | 42        |
| 49 | Nitrogen, phosphorus, and potassium budgets in Indian agriculture. Nutrient Cycling in Agroecosystems, 2010, 86, 287-299.                                                                                                       | 2.2 | 77        |
| 50 | Mitigating greenhouse gas and nitrogen loss with improved fertilizer management in rice:<br>quantification and economic assessment. Nutrient Cycling in Agroecosystems, 2010, 87, 443-454.                                      | 2.2 | 18        |
| 51 | Quantitative evaluation of climatic variability and risks for wheat yield in India. Climatic Change, 2009, 93, 157-175.                                                                                                         | 3.6 | 18        |
| 52 | Global warming mitigation potential of biogas plants in India. Environmental Monitoring and Assessment, 2009, 157, 407-418.                                                                                                     | 2.7 | 115       |
| 53 | Sustainability of the Rice-Wheat Cropping System. Journal of Crop Improvement, 2007, 19, 125-136.                                                                                                                               | 1.7 | 35        |
| 54 | Saving of Water and Labor in a Rice–Wheat System with Noâ€Tillage and Direct Seeding Technologies.<br>Agronomy Journal, 2007, 99, 1288-1296.                                                                                    | 1.8 | 264       |

Himanshu Pathak

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: II.<br>Cost–benefit assessment for different technologies, regions and scales. Agricultural Systems, 2007,<br>94, 826-840.                                           | 6.1 | 24        |
| 56 | Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: I.<br>Generation of technical coefficients. Agricultural Systems, 2007, 94, 807-825.                                                                                 | 6.1 | 101       |
| 57 | Simulation of fertilizer requirement for irrigated wheat in eastern India using the QUEFTS model.<br>Archives of Agronomy and Soil Science, 2006, 52, 403-418.                                                                                                   | 2.6 | 16        |
| 58 | InfoCrop: A dynamic simulation model for the assessment of crop yields, losses due to pests, and<br>environmental impact of agro-ecosystems in tropical environments. I. Model description. Agricultural<br>Systems, 2006, 89, 1-25.                             | 6.1 | 211       |
| 59 | Simulation of Nitrogen Balance in Rice-Wheat Systems of the Indo-Gangetic Plains. Soil Science Society of America Journal, 2006, 70, 1612-1622.                                                                                                                  | 2.2 | 55        |
| 60 | Recycling of rice straw to improve wheat yield and soil fertility and reduce atmospheric pollution.<br>Paddy and Water Environment, 2006, 4, 111-117.                                                                                                            | 1.8 | 118       |
| 61 | Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model.<br>Biogeosciences, 2005, 2, 113-123.                                                                                                                           | 3.3 | 143       |
| 62 | Efficiency of Fertilizer Nitrogen in Cereal Production: Retrospects and Prospects. Advances in Agronomy, 2005, , 85-156.                                                                                                                                         | 5.2 | 794       |
| 63 | Mitigating nitrous oxide and methane emissions from soil in rice–wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors. Chemosphere, 2005, 58, 141-147.                                                                               | 8.2 | 156       |
| 64 | Title is missing!. Nutrient Cycling in Agroecosystems, 2003, 65, 105-113.                                                                                                                                                                                        | 2.2 | 110       |
| 65 | Methane emission from rice–wheat cropping system in the Indo-Gangetic plain in relation to<br>irrigation, farmyard manure and dicyandiamide application. Agriculture, Ecosystems and Environment,<br>2003, 97, 309-316.                                          | 5.3 | 83        |
| 66 | How extensive are yield declines in long-term rice–wheat experiments in Asia?. Field Crops Research, 2003, 81, 159-180.                                                                                                                                          | 5.1 | 457       |
| 67 | Yield and Soil Nutrient Changes in a Longâ€Term Riceâ€Wheat Rotation in India. Soil Science Society of<br>America Journal, 2002, 66, 162-170.                                                                                                                    | 2.2 | 73        |
| 68 | Yield and Soil Fertility Trends in a 20‥ear Rice–Rice–Wheat Experiment in Nepal. Soil Science Society of<br>America Journal, 2002, 66, 857-867.                                                                                                                  | 2.2 | 98        |
| 69 | Nitrous oxide emission from a sandy loam Inceptisol under irrigated wheat in India as influenced by different nitrification inhibitors. Agriculture, Ecosystems and Environment, 2002, 91, 283-293.                                                              | 5.3 | 83        |
| 70 | Effects of dicyandiamide, farmyard manure and irrigation on crop yields and ammonia volatilization<br>from an alluvial soil under a rice ( Oryza sativa L.)-wheat ( Triticum aestivum L.) cropping system.<br>Biology and Fertility of Soils, 2002, 36, 207-214. | 4.3 | 70        |
| 71 | Emission of nitrous oxide from rice-wheat systems of Indo-Gangetic plains of India. Environmental<br>Monitoring and Assessment, 2002, 77, 163-178.                                                                                                               | 2.7 | 141       |
| 72 | Yield and Soil Fertility Trends in a 20-Year Rice–Rice–Wheat Experiment in Nepal. Soil Science Society<br>of America Journal, 2002, 66, 857.                                                                                                                     | 2.2 | 72        |

| #  | Article                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Long-term changes in yield and soil fertility in a twenty-year rice-wheat experiment in Nepal. Biology<br>and Fertility of Soils, 2001, 34, 73-78. | 4.3 | 109       |