
Haiqiao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8871558/publications.pdf Version: 2024-02-01

Ηλιοιλο Μλικς

#	Article	IF	CITATIONS
1	Recent progress in smallâ€molecule donors for nonâ€fullerene allâ€smallâ€molecule organic solar cells. Nano Select, 2022, 3, 233-247.	3.7	17
2	Study on ethanol resistance stability and adhesion properties of polyacrylate latex for <scp>PE</scp> or <scp>BOPP</scp> film inks. Journal of Applied Polymer Science, 2022, 139, .	2.6	7
3	The Assembly and Jamming of Nanoparticle Surfactants at Liquid–Liquid Interfaces. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
4	The Assembly and Jamming of Nanoparticle Surfactants at Liquid–Liquid Interfaces. Angewandte Chemie, 2022, 134, .	2.0	18
5	Perylene-diimide derived organic photovoltaic materials. Science China Chemistry, 2022, 65, 462-485.	8.2	43
6	Synthesis of waterborne polyurethane ink binder with high Tâ€peel strength and its application in biaxially oriented polypropylene film printing. Journal of Applied Polymer Science, 2021, 138, 50273.	2.6	2
7	Polymer Additive SBS: More Sensitive to Fluorinated Asymmetricâ€Indenothiopheneâ€Based Polymer Solar Cells. ChemistrySelect, 2021, 6, 1852-1861.	1.5	1
8	Positive effects of side-chain fluorination and polymer additive SBS on the enhanced performance of asymmetric-indenothiophene-based polymer solar cells. Dyes and Pigments, 2020, 174, 108044.	3.7	5
9	Photoaging and Fire Performance of Polypropylene Containing Melamine Phosphate. ACS Applied Polymer Materials, 2020, 2, 4455-4463.	4.4	17
10	Highly efficient solar anti-icing/deicing <i>via</i> a hierarchical structured surface. Materials Horizons, 2020, 7, 2097-2104.	12.2	108
11	Reconfigurable Liquids Stabilized by DNA Surfactants. ACS Applied Materials & Interfaces, 2020, 12, 13551-13557.	8.0	23
12	Selfâ€Assembly of MXene‣urfactants at Liquid–Liquid Interfaces: From Structured Liquids to 3D Aerogels. Angewandte Chemie, 2019, 131, 18339-18344.	2.0	14
13	Selfâ€Assembly of MXeneâ€Surfactants at Liquid–Liquid Interfaces: From Structured Liquids to 3D Aerogels. Angewandte Chemie - International Edition, 2019, 58, 18171-18176.	13.8	166
14	Implication of side-chain fluorination on electronic properties, ordering structures, and photovoltaic performance in asymmetric-indenothiophene-based semiconducting polymers. Organic Electronics, 2019, 70, 122-130.	2.6	5
15	Preparation, rheology, and film properties of polyacrylate latex using amphiphilic macroreversible additionâ€fragmentation chain transfer agents as surfactants. Journal of Applied Polymer Science, 2019, 136, 47463.	2.6	3
16	Facile synthesis and surface activity of poly(ethylene glycol) star polymers with a phosphazene core. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 541, 17-25.	4.7	9
17	High-Efficiency All Polymer Solar Cell with a Low Voltage Loss of 0.56 V. ACS Applied Energy Materials, 2018, 1, 2350-2357.	5.1	9
18	Introducing alkylthio side chains into acceptor units to improve the photovoltaic performance of a quinoxaline based D-A polymer. Organic Electronics, 2018, 61, 197-206.	2.6	6

Haiqiao Wang

#	Article	IF	CITATIONS
19	High photovoltaic performance of as-cast devices based on new quinoxaline-based donor–acceptor copolymers. Polymer Chemistry, 2017, 8, 5688-5697.	3.9	13
20	Incorporation of Hexaâ€ <i>peri</i> â€hexabenzocoronene (HBC) into Carbazole–Benzoâ€2,1,3â€thiadiazole Copolymers to Improve Hole Mobility and Photovoltaic Performance. Chemistry - an Asian Journal, 2016, 11, 766-774.	3.3	4
21	End-Capping Effect of Quinoxalino[2,3-bâ€2]porphyrin on Donor–Acceptor Copolymer and Improved Performance of Polymer Solar Cells. Macromolecules, 2016, 49, 3723-3732.	4.8	27
22	Hexa-peri-hexabenzocoronene and diketopyrrolopyrrole based D-A conjugated copolymers for organic field effect transistor and polymer solar cells. Organic Electronics, 2016, 38, 245-255.	2.6	22
23	Two Gelation Mechanisms of Deoxycholate with Inorganic Additives: Hydrogen Bonding and Electrostatic Interactions. Journal of Physical Chemistry B, 2016, 120, 6812-6818.	2.6	25
24	Hydrogels Triggered by Metal Ions as Precursors of Network CuS for DNA Detection. Chemistry - A European Journal, 2015, 21, 12194-12201.	3.3	35
25	Synthesis, characterization, and field-effect properties of (E)-2-(2-(thiophen-2-yl)vinyl)thiophen-based donor–acceptor copolymers. Polymer, 2015, 68, 302-307.	3.8	16
26	Effect of fluorine substitution on the photovoltaic performance of poly(thiophene-quinoxaline) copolymers. Polymer Chemistry, 2015, 6, 8203-8213.	3.9	14
27	Improved Photovoltaic Properties of Donor–Acceptor Copolymers by Introducing Quinoxalino[2,3- <i>b</i> ′]porphyrin as a Light-Harvesting Unit. Macromolecules, 2015, 48, 287-296.	4.8	38
28	The role of conjugated side chains in high performance photovoltaic polymers. Journal of Materials Chemistry A, 2015, 3, 2802-2814.	10.3	41
29	Effects of fluorination on the properties of thieno[3,2-b]thiophene-bridged donor–i̇́€â€"acceptor polymer semiconductors. Polymer Chemistry, 2014, 5, 502-511.	3.9	55
30	Synthesis and Characterization of Angular-Shaped Naphtho[1,2- <i>b</i> ;5,6- <i>b</i> ′]difuran–Diketopyrrolopyrrole-Containing Copolymers for High-Performance Organic Field-Effect Transistors. Macromolecules, 2014, 47, 616-625.	4.8	39
31	Alkylphenyl Substituted Naphthodithiophene: A New Building Unit with Conjugated Side Chains for Semiconducting Materials. Macromolecular Rapid Communications, 2014, 35, 1886-1889.	3.9	8
32	Self n-doped [6,6]-phenyl-C61-butyric acid 2-((2-(trimethylammonium)ethyl)-(dimethyl)ammonium) ethyl ester diiodides as a cathode interlayer for inverted polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 14720-14728.	10.3	41
33	Rational design on D–A conjugated P(BDT–DTBT) polymers for polymer solar cells. Polymer Chemistry, 2014, 5, 5200-5210.	3.9	94
34	Synthesis, characterization, and organic fieldâ€effect transistors study of conjugated D–A copolymers based on dialkylated naphtho[1,2â€b:5,6â€ <i>b</i> ′]dithiophene/naphtho[1,2â€b:5,6â€ <i>b</i> ′]difuran a benzodiathiazole/benzoxadiazole. Journal of Polymer Science Part A, 2014, 52, 2465-2476.	an d. 3	8
35	Effect of Extended Ï€â€Conjugation Structure of Donor–Acceptor Conjugated Copolymers on the Photoelectronic Properties. Chemistry - an Asian Journal, 2014, 9, 2961-2969.	3.3	9
36	Hydrogels Facilitated by Monovalent Cations and Their Use as Efficient Dye Adsorbents. Journal of Physical Chemistry B, 2014, 118, 4693-4701.	2.6	49

HAIQIAO WANG

#	Article	IF	CITATIONS
37	Preparation and characterization of polyamide 66/poly(hydroxyl ether of bisphenol A) blends without compatibilizer. Journal of Applied Polymer Science, 2014, 131, .	2.6	7
38	Novel epoxidized hyperbranched poly(phenylene oxide): Synthesis and application as a modifier for diglycidyl ether of bisphenol A. Journal of Applied Polymer Science, 2013, 128, 907-914.	2.6	28
39	Efficient polymer solar cells based on a broad bandgap D–A copolymer of "zigzag― naphthodithiophene and thieno[3,4-c]pyrrole-4,6-dione. Journal of Materials Chemistry A, 2013, 1, 1540-1543.	10.3	55
40	Synthesis and Photovoltaic Properties of Poly(5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)benzo-[c][1,2,5]-thiadiazole-9,9-dioctylfluorene). Journal of Materials Science and Technology, 2013, 29, 1214-1218.	10.7	4
41	Synthesis and characterization of porphyrinâ€based Dâ€Ï€â€A conjugated polymers for polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 2243-2251.	2.3	12
42	Thieno[3,2- <i>b</i>]thiophene-Bridged Dâ~π–A Polymer Semiconductor Based on Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene and Benzoxadiazole. Macromolecules, 2013, 46, 4805-4812.	4.8	66
43	Naphtho[1,2- <i>b</i> :5,6- <i>b</i> ′]dithiophene-Based Donor–Acceptor Copolymer Semiconductors for High-Mobility Field-Effect Transistors and Efficient Polymer Solar Cells. Macromolecules, 2013, 46, 3358-3366.	4.8	75
44	Study of glycidyl ether as a new kind of modifier for ureaâ€formaldehyde wood adhesives. Journal of Applied Polymer Science, 2013, 128, 4086-4094.	2.6	18
45	Efficiency enhancement for bulk heterojunction photovoltaic cells via incorporation of alcohol soluble conjugated polymer interlayer. Applied Physics Letters, 2012, 100, 203304.	3.3	36
46	Effects of π-Conjugated Bridges on Photovoltaic Properties of Donor-π-Acceptor Conjugated Copolymers. Macromolecules, 2012, 45, 1208-1216.	4.8	191
47	Porphyrin-containing D–π–A conjugated polymer with absorption over the entire spectrum of visible light and its applications in solar cells. Journal of Materials Chemistry, 2012, 22, 11006.	6.7	33
48	Narrow band gap D–A copolymer of indacenodithiophene and diketopyrrolopyrrole with deep HOMO level: Synthesis and application in fieldâ€effect transistors and polymer solar cells. Journal of Polymer Science Part A, 2012, 50, 371-377.	2.3	35
49	Highâ€Efficiency Polymer Solar Cells Based on Poly(3â€pentylthiophene) with Indene ₇₀ Bisadduct as an Acceptor. Advanced Energy Materials, 2012, 2, 966-969.	19.5	24
50	A furan-bridged D-ï€-A copolymer with deep HOMO level: synthesis and application in polymer solar cells. Polymer Chemistry, 2011, 2, 2872.	3.9	71
51	A novel poly(thienylenevinylene) derivative for application in polymer solar cells. Polymer Chemistry, 2011, 2, 2102.	3.9	17
52	Synthesis and Photovoltaic Properties of D–A Copolymers Based on Alkyl-Substituted Indacenodithiophene Donor Unit. Chemistry of Materials, 2011, 23, 4264-4270.	6.7	193
53	Synthesis and characterization of Ag@polycarbazole coaxial nanocables and their enhanced dispersion behavior. Metals and Materials International, 2011, 17, 417-423.	3.4	15
54	Efficiency Enhancement of Polymer Solar Cells Based on Poly(3â€hexylthiophene)/Indene ₇₀ Bisadduct via Methylthiophene Additive. Advanced Energy Materials, 2011, 1, 1058-1061.	19.5	80

HAIQIAO WANG

#	Article	IF	CITATIONS
55	Synthesis and properties of partially conjugated hyperbranched lightâ€emitting polymers. Journal of Applied Polymer Science, 2010, 117, 517-523.	2.6	4
56	Hyperbranched polymer for light-emitting applications. Polymer International, 2010, 59, 1384-1389.	3.1	5
57	Zinc Tetraphenylporphyrinâ^Fluorene Branched Copolymers: Synthesis and Light-Emitting Properties. Macromolecules, 2010, 43, 709-715.	4.8	59
58	Structure-phase morphology – Property relationship of a series of light-emitting alternating copolymers with distyrylbenzenes segments and oligo(ethylene oxide) spacers. Acta Materialia, 2008, 56, 3327-3337.	7.9	5
59	Synthesis and property investigations: A partially conjugated hyperbranched polymer for light-emitting application. Synthetic Metals, 2008, 158, 437-441.	3.9	11
60	Electroluminescent properties of a partially-conjugated hyperbranched poly(p-phenylene vinylene). Polymers for Advanced Technologies, 2006, 17, 145-149.	3.2	26
61	Novel hyperbranched poly(phenylene oxide)s with phenolic terminal groups: synthesis, characterization, and modification. Polymer, 2006, 47, 1511-1518.	3.8	30
62	Ordered macroporous titania photonic balls by micrometer-scale spherical assembly templating. Journal of Materials Chemistry, 2005, 15, 2551.	6.7	29
63	Synthesis and characterization of a partial-conjugated hyperbranched poly(p-phenylene vinylene) (HPPV). Synthetic Metals, 2005, 151, 279-284.	3.9	26
64	Synthesis of block copolymers with well-defined alternating chromophore and flexible spacer for electroluminescence application. Thin Solid Films, 2003, 426, 40-46.	1.8	6
65	Synthesis and electroluminescent properties of a novel copolymer with short alternating conjugated and non-conjugated blocks. Polymer International, 2003, 52, 343-346.	3.1	6
66	Synthesis and electroluminescence of novel copolymers containing crown ether spacers. Journal of Materials Chemistry, 2003, 13, 800-806.	6.7	485
67	Design and synthesis of novel luminescent copolymers containing ionic conductive blocks on the skeletons. Synthetic Metals, 2002, 126, 219-223.	3.9	9
68	Blue-green light-emission LECs based on block copolymers containing di $(\hat{l}\pm$ -naphthalene) Tj ETQq0 0 0 rgBT /Ov	erlo <u>ck</u> 10 ⁻	Tf 50,222 Td (\ 27
69	Synthesis and electroluminescence properties of a novel poly(paraphenylene vinylene)-based copolymer with tri(ethylene oxide) segments on the backbone. Journal of Applied Polymer Science, 2002, 83, 2195-2200.	2.6	6
70	Novel copolymers for electroluminescent devices. Journal of Applied Polymer Science, 2002, 86, 3316-3321.	2.6	2
71	A luminescent copolymer containing PPV-based chromophores and flexible tri(ethylene oxide) spacers. Reactive and Functional Polymers, 2002, 52, 61-69.	4.1	9
72	Polymer light-emitting electrochemical cell based on a block copolymer containing tri(ethyleneoxide) spacers. Polymers for Advanced Technologies, 2002, 13, 663-669.	3.2	11