Yun-xiang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/887147/publications.pdf

Version: 2024-02-01

70 3,274 30 57
papers citations h-index g-index

72 72 72 4851 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Effect of Branching Structure on the Properties of Entangled or Non-covalently Crosslinked Polyisoprene. Chinese Journal of Polymer Science (English Edition), 2021, 39, 113-121.	2.0	2
2	The Relationship between Pendant Phosphate Groups and Mechanical Properties of Polyisoprene Rubber. Chinese Journal of Polymer Science (English Edition), 2021, 39, 465-473.	2.0	2
3	Bioinspired strategy to tune viscoelastic response of thermoplastic polyisoprene by retarding the dissociation of hydrogen bonding. Polymer, 2021, 212, 123272.	1.8	3
4	Synthesis and molecular properties of isomeric thienoisoindigo. Journal of Materials Chemistry C, 2021, 9, 13218-13225.	2.7	4
5	Modulation of charge transport through single-molecule bilactam junctions by tuning hydrogen bonds. Chemical Communications, 2021, 57, 1935-1938.	2.2	11
6	Oligopeptide binding guided by spacer length lead to remarkably strong and stable network of polyisoprene elastomers. Polymer, 2021, 233, 124185.	1.8	5
7	Supramolecular aggregation for manipulating molecular packing by endgroups leading to mechanochromic fluorescence. Dyes and Pigments, 2021, 195, 109668.	2.0	2
8	Toughening and enhancing thermostability of vitrimer rubber via adding heterocyclic aramid. Composites Communications, 2021, 28, 100934.	3.3	5
9	Non-Fullerene Acceptors with an Optical Response over 1000 nm toward Efficient Organic Solar Cells. ACS Applied Materials & Diterfaces, 2021, 13, 51279-51288.	4.0	10
10	Probe the terminal interactions and their synergistic effects on polyisoprene properties by mimicking the structure of natural rubber. Polymer, 2021, 237, 124362.	1.8	5
11	Influence of Oligopeptide Length and Distribution on Polyisoprene Properties. Polymers, 2021, 13, 4408.	2.0	1
12	Unsymmetric Side Chains of Indacenodithiophene Copolymers Lead to Improved Packing and Device Performance. Chinese Journal of Polymer Science (English Edition), 2020, 38, 342-348.	2.0	3
13	Distinct luminescent properties between thiophene-S-oxide and Thiophene-S, S-dioxides incorporated ladder-type molecules. Dyes and Pigments, 2020, 175, 108147.	2.0	6
14	Ductile composites with strain hardening behavior constructing highly sensitive electronic sensor. Composites Communications, 2019, 15, 20-24.	3.3	10
15	Ladder-Type Dye with Large Transition Dipole Moment for Solvatochromism and Microphase Visualization. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29814-29820.	4.0	30
16	Terminally and randomly functionalized polyisoprene lead to distinct aggregation behaviors of polar groups. Polymer, 2019, 178, 121629.	1.8	6
17	A distorted lactam unit with intramolecular hydrogen bonds as the electron donor of polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 12290-12296.	2.7	4
18	Interfacial engineering of front-contact with finely tuned polymer interlayers for high-performance large-area flexible perovskite solar cells. Nano Energy, 2019, 62, 734-744.	8.2	36

#	Article	IF	Citations
19	Plasmonic Metal Nanoparticles with Core–Bishell Structure for High-Performance Organic and Perovskite Solar Cells. ACS Nano, 2019, 13, 5397-5409.	7.3	93
20	Branching function of terminal phosphate groups of polyisoprene chain. Polymer, 2019, 174, 18-24.	1.8	13
21	Stereoisomerism of ladder-type acceptor molecules and its effect on photovoltaic properties. Dyes and Pigments, 2019, 165, 354-360.	2.0	5
22	Fullerene-Anchored Core-Shell ZnO Nanoparticles for Efficient and Stable Dual-Sensitized Perovskite Solar Cells. Joule, 2019, 3, 417-431.	11.7	61
23	End-chain effects of non-fullerene acceptors on polymer solar cells. Organic Electronics, 2019, 64, 1-6.	1.4	13
24	Efficient Nonfullerene Polymer Solar Cells Enabled by Smallâ€Molecular Acceptors with a Decreased Fusedâ€Ring Core. Small Methods, 2018, 2, 1700373.	4.6	22
25	Synthesis of a Thiophene Analogue of Isoindigo by C–H Activation/Oxidative Cyclization and Application of Its Copolymeric Materials to Organic Transistors. European Journal of Organic Chemistry, 2018, 2018, 1218-1223.	1.2	5
26	Efficient device engineering for inverted non-fullerene organic solar cells with low energy loss. Journal of Materials Chemistry C, 2018, 6, 4457-4463.	2.7	41
27	Synergistic Effects of Selenophene and Extended Ladderâ€√ype Donor Units for Efficient Polymer Solar Cells. Macromolecular Rapid Communications, 2018, 39, 1700483.	2.0	7
28	Rýcktitelbild: Towards a Supertough Thermoplastic Polyisoprene Elastomer Based on a Biomimic Strategy (Angew. Chem. 48/2018). Angewandte Chemie, 2018, 130, 16136-16136.	1.6	0
29	Towards a Supertough Thermoplastic Polyisoprene Elastomer Based on a Biomimic Strategy. Angewandte Chemie, 2018, 130, 16062-16066.	1.6	8
30	Towards a Supertough Thermoplastic Polyisoprene Elastomer Based on a Biomimic Strategy. Angewandte Chemie - International Edition, 2018, 57, 15836-15840.	7.2	45
31	Thermally stable high performance non-fullerene polymer solar cells with low energy loss by using ladder-type small molecule acceptors. Organic Electronics, 2017, 44, 217-224.	1.4	45
32	The Influence of Oxygen Atoms on Conformation and π–π Stacking of Ladderâ€Type Donorâ€Based Polymers and Their Photovoltaic Properties. Macromolecular Rapid Communications, 2017, 38, 1700156.	2.0	6
33	Interface design for high-efficiency non-fullerene polymer solar cells. Energy and Environmental Science, 2017, 10, 1784-1791.	15.6	187
34	Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable Large-Area Solar Cell. Chemistry of Materials, 2016, 28, 3131-3138.	3.2	174
35	Nano-bio hybrids of plasmonic metals/photosynthetic proteins for broad-band light absorption enhancement in organic solar cells. Journal of Materials Chemistry A, 2016, 4, 13400-13406.	5.2	24
36	Controlled Ringâ€Opening Polymerization of <i>O</i> à€Carboxyanhydrides Using a βâ€Diiminate Zinc Catalyst. Angewandte Chemie - International Edition, 2016, 55, 13010-13014.	7.2	56

3

#	Article	IF	Citations
37	Manipulation of optical field distribution in ITO-free micro-cavity polymer tandem solar cells via the out-of-cell capping layer for high photovoltaic performance. Journal of Materials Chemistry A, 2016, 4, 961-968.	5.2	16
38	Enhanced Performance of Organic Solar Cells with Increased End Group Dipole Moment in Indacenodithieno[3,2â€b]thiopheneâ€Based Molecules. Advanced Functional Materials, 2015, 25, 4889-4897.	7.8	61
39	Bioorthogonal oxime ligation mediated in vivo cancer targeting. Chemical Science, 2015, 6, 2182-2186.	3.7	28
40	A Simple and Universal Method to Increase Light Absorption in Ternary Blend Polymer Solar Cells Based on Ladderâ€Type Polymers. Advanced Optical Materials, 2015, 3, 321-327.	3.6	27
41	Photovoltaic performance of ladder-type indacenodithieno[3,2-b]thiophene-based polymers with alkoxyphenyl side chains. RSC Advances, 2015, 5, 26680-26685.	1.7	7
42	A general fabrication procedure for efficient and stable planar perovskite solar cells: Morphological and interfacial control by in-situ-generated layered perovskite. Nano Energy, 2015, 18, 165-175.	8.2	92
43	The critical role of additives in binary halogen-free solvent systems for the general processing of highly efficient organic solar cells. RSC Advances, 2015, 5, 93689-93696.	1.7	13
44	Investigating the crystalline nature, charge transport properties and photovoltaic performances of ladder-type donor based small molecules. RSC Advances, 2015, 5, 80677-80681.	1.7	5
45	Enhanced Lightâ€Harvesting by Integrating Synergetic Microcavity and Plasmonic Effects for Highâ€Performance ITOâ€Free Flexible Polymer Solar Cells. Advanced Functional Materials, 2015, 25, 567-574.	7.8	44
46	Strong Photocurrent Enhancements in Highly Efficient Flexible Organic Solar Cells by Adopting a Microcavity Configuration. Advanced Materials, 2014, 26, 3349-3354.	11.1	63
47	Highly Efficient Inverted Organic Solar Cells Through Material and Interfacial Engineering of Indacenodithieno[3,2â€∢i>b⟨li>]thiopheneâ€Based Polymers and Devices. Advanced Functional Materials, 2014, 24, 1465-1473.	7.8	132
48	A General Route to Enhance Polymer Solar Cell Performance using Plasmonic Nanoprisms. Advanced Energy Materials, 2014, 4, 1400206.	10.2	118
49	Hydrogen bonding-driven highly stable homoduplexes formed by benzene/naphthalene amide oligomers. Organic Chemistry Frontiers, 2014, 1, 73-78.	2.3	21
50	Elevenâ€Membered Fusedâ€Ring Low Bandâ€Gap Polymer with Enhanced Charge Carrier Mobility and Photovoltaic Performance. Advanced Functional Materials, 2014, 24, 3631-3638.	7.8	99
51	Microcavityâ€Enhanced Lightâ€Trapping for Highly Efficient Organic Parallel Tandem Solar Cells. Advanced Materials, 2014, 26, 6778-6784.	11.1	89
52	Molecular Weight Effect on the Absorption, Charge Carrier Mobility, and Photovoltaic Performance of an Indacenodiselenophene-Based Ladder-Type Polymer. Chemistry of Materials, 2013, 25, 3188-3195.	3.2	155
53	Side-Chain Effect on Cyclopentadithiophene/Fluorobenzothiadiazole-Based Low Band Gap Polymers and Their Applications for Polymer Solar Cells. Macromolecules, 2013, 46, 5497-5503.	2.2	94
54	Non-halogenated solvents for environmentally friendly processing of high-performance bulk-heterojunction polymer solar cells. Energy and Environmental Science, 2013, 6, 3241.	15.6	168

#	Article	IF	CITATIONS
55	Drug-Initiated Ring-Opening Polymerization of <i>O</i> -Carboxyanhydrides for the Preparation of Anticancer Drug–Poly(<i>O</i> -carboxyanhydride) Nanoconjugates. Biomacromolecules, 2013, 14, 920-929.	2.6	70
56	Redox-Responsive, Core Cross-Linked Polyester Micelles. ACS Macro Letters, 2013, 2, 40-44.	2.3	116
57	Indacenodithieno[3,2-b]thiophene-based broad bandgap polymers for high efficiency polymer solar cells. Polymer Chemistry, 2013, 4, 5220.	1.9	42
58	Synthesis of Water-Soluble Poly(\hat{l} ±-hydroxy acids) from Living Ring-Opening Polymerization of <i>O</i> -Benzyl- <scp>I</scp> -serine Carboxyanhydrides. ACS Macro Letters, 2012, 1, 441-444.	2.3	57
59	Facile Functionalization of Polyesters through Thiol-yne Chemistry for the Design of Degradable, Cell-Penetrating and Gene Delivery Dual-Functional Agents. Biomacromolecules, 2012, 13, 3456-3462.	2.6	68
60	Improved Charge Transport and Absorption Coefficient in Indacenodithieno[3,2â€b]thiopheneâ€based Ladderâ€7ype Polymer Leading to Highly Efficient Polymer Solar Cells. Advanced Materials, 2012, 24, 6356-6361.	11.1	343
61	Oligo(quinoxalineethynylene)s: synthesis, properties, and Ag+-mediated complanation. Chemical Communications, 2011, 47, 1524-1526.	2.2	9
62	Controllable self-assemblies of micro/nano-tubes and vesicles from arylamides and their applications as templates to fabricate Pt micro/nano-tubes and hollow Pt nanospheres. Soft Matter, 2010, 6, 1246.	1.2	13
63	Complexation of two non-fully hydrogen bonded aromatic hydrazide heptamers toward n-octyl-α-L-glucopyranoside in chloroform. Science in China Series B: Chemistry, 2009, 52, 489-496.	0.8	7
64	Folding of Aromatic Amide-Based Oligomers Induced by Benzene-1,3,5-tricarboxylate Anion in DMSO. Journal of Organic Chemistry, 2009, 74, 7267-7273.	1.7	55
65	Self-Assembly of Vesicles from Amphiphilic Aromatic Amide-Based Oligomers. Langmuir, 2009, 25, 2684-2688.	1.6	48
66	Organic nanotubes assembled from isophthalamides and their application as templates to fabricate Pt nanotubes. Chemical Communications, 2009, , 4212.	2.2	11
67	Vesicles and Organogels from Foldamers: A Solvent-Modulated Self-Assembling Process. Journal of the American Chemical Society, 2008, 130, 6936-6937.	6.6	161
68	Complexation of hydrogen bonding-driven preorganized di- and hexacationic bisporphyrin receptors for C60 in aqueous and DMSO media. Tetrahedron Letters, 2007, 48, 7327-7331.	0.7	16
69	Hydrogen-Bonding-Mediated Anthranilamide Homoduplexes. Increasing Stability through Preorganization and Iterative Arrangement of a Simple Amide Binding Site. Journal of the American Chemical Society, 2006, 128, 12307-12313.	6.6	62
70	Hydrogen bonding-mediated self-assembly of anthranilamide-based homodimers through preorganization of the amido and ureido binding sites. Tetrahedron, 2006, 62, 11933-11941.	1.0	14