Hongyang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8871353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale, 2018, 10, 11775-11781.	5.6	274
2	A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation. Materials Horizons, 2018, 5, 1143-1150.	12.2	232
3	MOF-derived porous Ni ₂ P nanosheets as novel bifunctional electrocatalysts for the hydrogen and oxygen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 18720-18727.	10.3	149
4	Hydrothermal synthesis of nitrogen-doped graphene hydrogels using amino acids with different acidities as doping agents. Journal of Materials Chemistry A, 2014, 2, 8352-8361.	10.3	141
5	Regulating the active species of Ni(OH) ₂ using CeO ₂ : 3D CeO ₂ /Ni(OH) ₂ /carbon foam as an efficient electrode for the oxygen evolution reaction. Chemical Science, 2017, 8, 3211-3217.	7.4	141
6	Electrochromic Poly(chalcogenoviologen)s as Anode Materials for Highâ€Performance Organic Radical Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 8468-8473.	13.8	134
7	Rare earth incorporated electrode materials for advanced energy storage. Coordination Chemistry Reviews, 2019, 390, 32-49.	18.8	126
8	Colloidal synthesis of 1T' phase dominated WS2 towards endurable electrocatalysis. Nano Energy, 2018, 50, 176-181.	16.0	123
9	Coal based activated carbon nanofibers prepared by electrospinning. Journal of Materials Chemistry A, 2014, 2, 9338-9344.	10.3	122
10	Efficient Optimization of Electron/Oxygen Pathway by Constructing Ceria/Hydroxide Interface for Highly Active Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1908367.	14.9	120
11	Mo-doped Ni ₂ P hollow nanostructures: highly efficient and durable bifunctional electrocatalysts for alkaline water splitting. Journal of Materials Chemistry A, 2019, 7, 7636-7643.	10.3	110
12	Crystalline–Amorphous Permalloy@Iron Oxide Core–Shell Nanoparticles Decorated on Graphene as High-Efficiency, Lightweight, and Hydrophobic Microwave Absorbents. ACS Applied Materials & Interfaces, 2019, 11, 6374-6383.	8.0	96
13	Colloidally synthesized MoSe ₂ /graphene hybrid nanostructures as efficient electrocatalysts for hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 19706-19710.	10.3	92
14	MoSe ₂ nanosheets grown on carbon cloth with superior electrochemical performance as flexible electrode for sodium ion batteries. RSC Advances, 2016, 6, 1440-1444.	3.6	92
15	Organic Thiocarboxylate Electrodes for a Roomâ€Temperature Sodiumâ€Ion Battery Delivering an Ultrahigh Capacity. Angewandte Chemie - International Edition, 2017, 56, 15334-15338.	13.8	91
16	Methacrylate-ended polypeptides and polypeptoids for antimicrobial and antifouling coatings. Polymer Chemistry, 2017, 8, 6386-6397.	3.9	89
17	Symmetric full cells assembled by using self-supporting Na ₃ V ₂ (PO ₄) ₃ bipolar electrodes for superior sodium energy storage. Journal of Materials Chemistry A, 2016, 4, 7155-7159.	10.3	81
18	Coal-Based Hierarchical Porous Carbon Synthesized with a Soluble Salt Self-Assembly-Assisted Method for High Performance Supercapacitors and Li-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 3255-3263.	6.7	80

HONGYANG ZHAO

#	Article	IF	CITATIONS
19	Coal derived porous carbon fibers with tunable internal channels for flexible electrodes and organic matter absorption. Journal of Materials Chemistry A, 2015, 3, 21178-21184.	10.3	70
20	Superior-Performance Aqueous Zinc Ion Battery Based on Structural Transformation of MnO ₂ by Rare Earth Doping. Journal of Physical Chemistry C, 2019, 123, 22735-22741.	3.1	70
21	Dense Crystalline–Amorphous Interfacial Sites for Enhanced Electrocatalytic Oxygen Evolution. Advanced Functional Materials, 2022, 32, 2107056.	14.9	69
22	Synthesis of High-Quality $\hat{I}\pm$ -MnSe Nanostructures with Superior Lithium Storage Properties. Inorganic Chemistry, 2016, 55, 2765-2770.	4.0	66
23	Lanthanide doping induced electrochemical enhancement of Na ₂ Ti ₃ O ₇ anodes for sodium-ion batteries. Chemical Science, 2018, 9, 3421-3425.	7.4	66
24	Room temperature stable CO _{<i>x</i>} -free H ₂ production from methanol with magnesium oxide nanophotocatalysts. Science Advances, 2016, 2, e1501425.	10.3	62
25	Assembled 3D electrocatalysts for efficient hydrogen evolution: WSe ₂ layers anchored on graphene sheets. Inorganic Chemistry Frontiers, 2016, 3, 313-319.	6.0	61
26	Interplanar space-controllable carboxylate pillared metal organic framework ultrathin nanosheet for superhigh capacity rechargeable alkaline battery. Nano Energy, 2019, 62, 876-882.	16.0	60
27	A Sustainable Multipurpose Separator Directed Against the Shuttle Effect of Polysulfides for Highâ€Performance Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	19.5	53
28	Thermally Stable Hierarchical Nanostructures of Ultrathin MoS ₂ Nanosheet-Coated CeO ₂ Hollow Spheres as Catalyst for Ammonia Decomposition. Inorganic Chemistry, 2016, 55, 3992-3999.	4.0	52
29	Tuning the Color Emission of Sr ₂ P ₂ O ₇ : Tb ³⁺ , Eu ³⁺ Phosphors Based on Energy Transfer. Journal of the American Ceramic Society, 2015, 98, 1536-1541.	3.8	51
30	Core–shell structured CeO ₂ @MoS ₂ nanocomposites for high performance symmetric supercapacitors. CrystEngComm, 2016, 18, 4158-4164.	2.6	51
31	Electrolytes for Batteries with Earthâ€Abundant Metal Anodes. Chemistry - A European Journal, 2018, 24, 18220-18234.	3.3	50
32	Interface engineering boosts electrochemical performance by fabricating CeO2@CoP Schottky conjunction for hybrid supercapacitors. Electrochimica Acta, 2020, 337, 135817.	5.2	50
33	Luminescence, energy transfer and tunable color of Ce ³⁺ ,Dy ³⁺ /Tb ³⁺ doped BaZn ₂ (PO ₄) ₂ phosphors. New Journal of Chemistry, 2016, 40, 3086-3093.	2.8	44
34	Tumorâ€Microenvironmentâ€Induced Degradation of Ultrathin Gadolinium Oxide Nanoscrolls for Magneticâ€Resonanceâ€Imagingâ€Monitored, Activatable Cancer Chemotherapy. Angewandte Chemie - International Edition, 2019, 58, 6880-6885.	13.8	44
35	Porous CNT@Li ₄ Ti ₅ O ₁₂ coaxial nanocables as ultra high power and long life anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 2089-2095.	10.3	41
36	High-quality Cu2ZnSnS4 and Cu2ZnSnSe4 nanocrystals hybrid with ZnO and NaYF4: Yb, Tm as efficient photocatalytic sensitizers. Applied Catalysis B: Environmental, 2017, 200, 402-411.	20.2	41

HONGYANG ZHAO

#	Article	IF	CITATIONS
37	High rate performance porous carbon prepared from coal for supercapacitors. Materials Letters, 2015, 149, 85-88.	2.6	35
38	Currentâ€Ðensity Regulating Lithium Metal Directional Deposition for Long Cycleâ€Life Li Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 19306-19313.	13.8	35
39	Constructing monodispersed MoSe2 anchored on graphene: a superior nanomaterial for sodium storage. Science China Materials, 2017, 60, 167-177.	6.3	33
40	Highly Crystalized Co ₂ Mo ₃ O ₈ Hexagonal Nanoplates Interconnected by Coal-Derived Carbon via the Molten-Salt-Assisted Method for Competitive Li-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2019, 11, 7006-7013.	8.0	32
41	Multimodal channel cancer chemotherapy by 2D functional gadolinium metal–organic framework. National Science Review, 2021, 8, nwaa221.	9.5	31
42	Construction of high quality ultrathin lanthanide oxyiodide nanosheets for enhanced CT imaging and anticancer drug delivery to efficient cancer theranostics. Biomaterials, 2020, 230, 119670.	11.4	30
43	Facile phase transition engineering of MoS ₂ for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 8394-8400.	10.3	28
44	Rational design of hybrid porous nanotubes with robust structure of ultrafine Li4Ti5O12 nanoparticles embedded in bamboo-like CNTs for superior lithium ion storage. Journal of Materials Chemistry A, 2018, 6, 3342-3349.	10.3	27
45	Hybrid porous bamboo-like CNTs embedding ultrasmall LiCrTiO ₄ nanoparticles as high rate and long life anode materials for lithium ion batteries. Chemical Communications, 2017, 53, 1033-1036.	4.1	25
46	Three-Electron Redox Enabled Dithiocarboxylate Electrode for Superior Lithium Storage Performance. ACS Applied Materials & Interfaces, 2018, 10, 35469-35476.	8.0	24
47	Photoluminescence properties and energy transfer of color tunable MgZn ₂ (PO ₄) ₂ :Ce ³⁺ ,Tb ³⁺ phosphors. Physical Chemistry Chemical Physics, 2015, 17, 28802-28808.	2.8	23
48	Pseudocapacitive Behaviors of Li ₂ FeTiO ₄ /C Hybrid Porous Nanotubes for Novel Lithium-Ion Battery Anodes with Superior Performances. ACS Applied Materials & Interfaces, 2018, 10, 20225-20230.	8.0	23
49	Electrochromic Poly(chalcogenoviologen)s as Anode Materials for Highâ€Performance Organic Radical Lithiumâ€Ion Batteries. Angewandte Chemie, 2019, 131, 8556-8561.	2.0	22
50	All in one theranostic nanoplatform enables efficient anti-tumor peptide delivery for triple-modal imaging guided cancer therapy. Nano Research, 2019, 12, 593-599.	10.4	22
51	Rational Design of Nanostructured Metal/C Interface in 3D Selfâ€Supporting Cellulose Carbon Aerogel Facilitating Highâ€Performance Liâ€CO ₂ Batteries. Advanced Energy Materials, 2022, 12, .	19.5	22
52	Rareâ€earthâ€incorporated lowâ€dimensional chalcogenides: Dryâ€method syntheses and applications. InformaÄnÃ-MateriÄ¡ly, 2020, 2, 466-482.	17.3	20
53	Anatase/rutile titania anchored carbon nanotube porous nanocomposites as superior anodes for lithium ion batteries. CrystEngComm, 2016, 18, 4489-4494.	2.6	17
54	Well-defined Co _x CeO _{2+x} –MoS ₂ nanotube hybrids as novel electrocatalysts for promising hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 9523-9527.	10.3	15

HONGYANG ZHAO

#	Article	IF	CITATIONS
55	Synthesis of porous gadolinium oxide nanosheets for cancer therapy and magnetic resonance imaging. Materials Letters, 2020, 265, 127375.	2.6	15
56	Confined formation of monoclinic Na ₄ Ti ₅ O ₁₂ nanoparticles embedded into porous CNTs: towards enhanced electrochemical performances for sodium ion batteries. New Journal of Chemistry, 2018, 42, 19340-19343.	2.8	14
57	Carbon Thin Film Wrapped around a Threeâ€Ðimensional Nitrogenâ€Ðoped Carbon Scaffold for Superiorâ€Performance Supercapacitors. Chemistry - A European Journal, 2017, 23, 9641-9646.	3.3	13
58	Cerium-doped bimetal organic framework as a superhigh capacity cathode for rechargeable alkaline batteries. Nanoscale, 2021, 13, 3581-3587.	5.6	13
59	Structure, composition and electrochemical performance analysis of fluorophosphates from different synthetic methods: is really Na ₃ V ₂ (PO ₄) ₂ F ₃ synthesized?. Journal of Materials Chemistry A. 2022. 10. 8877-8886.	10.3	13
60	EuS–CdS and EuS–ZnS heterostructured nanocrystals constructed by Co-thermal decomposition of molecular precursors in the solution phase. Journal of Materials Chemistry C, 2015, 3, 3902-3907.	5.5	11
61	Enhancing the Rate Capability of Niobium Oxide Electrode through Rareâ€Earth Doping Engineering. Batteries and Supercaps, 2019, 2, 924-928.	4.7	11
62	Ship in bottle synthesis of yolk-shell MnS@hollow carbon spheres for sodium storage. Nanotechnology, 2021, 32, 505602.	2.6	11
63	Thiocarboxylate-modified Ni(OH)2 nanosheets for high-performance alkaline batteries. Journal of Materials Chemistry A, 2019, 7, 20176-20181.	10.3	10
64	Tumorâ€Microenvironmentâ€Induced Degradation of Ultrathin Gadolinium Oxide Nanoscrolls for Magneticâ€Resonanceâ€Imagingâ€Monitored, Activatable Cancer Chemotherapy. Angewandte Chemie, 2019, 131, 6954-6959.	2.0	10
65	High Quality Ultrathin Lanthanide Selenide Nanostructures with Dual Modal Functionalities. Chemistry of Materials, 2016, 28, 2507-2510.	6.7	9
66	<scp> MoO ₂ </scp> /C hybrid synthesized by a facile moltenâ€saltâ€assisted approach for highâ€performance lithiumâ€ion batteries. International Journal of Energy Research, 2021, 45, 6418-6425.	4.5	9
67	Improved rate capability and cycling stability of bicontinuous hierarchical mesoporous LiFePO ₄ /C microbelts for lithium-ion batteries. New Journal of Chemistry, 2017, 41, 12969-12975.	2.8	7
68	Agent-Based Energy Sharing Mechanism Using Deep Deterministic Policy Gradient Algorithm. Energies, 2020, 13, 5027.	3.1	3
69	Currentâ€Density Regulating Lithium Metal Directional Deposition for Long Cycleâ€Life Li Metal Batteries. Angewandte Chemie, 2021, 133, 19455-19462.	2.0	2
70	Partial Hydrolysis of Cyanide Coordination Polymers Induced by a Pillar Ligand with Optimized Electrochemical Kinetics for Rechargeable Alkaline Batteries. Chemistry - A European Journal, 2021, 27, 17818-17823.	3.3	2
71	Biodegradable biocompatible MgO/Eu nanodrug with Acid-Base conversion capacity for targeted lung cancer therapy. Chemical Engineering Journal, 2022, 446, 136323.	12.7	2
72	Phase imaging using single-pixel detection in the spatial spectrum plane. Optical Engineering, 2018, 57, 1.	1.0	1

#	Article	IF	CITATIONS
73	Bottom-up Synthesis of Highly Active Catalyst by Coal-derived Carbon Quantum Dots for Oxygen Evolution Reaction. Materials Letters, 2022, , 132470.	2.6	1
74	Dither removing Fourier ptychographic microscope based on a two-axis rotation stage. Journal of Biomedical Optics, 2021, 26, .	2.6	0
75	Ligand Stabilization Strategy Boosted Electrode Kinetics in Cyanide Metal Organic Framework for Electrocatalytic Oxygen Evolution Reaction. ChemNanoMat, 0, , .	2.8	Ο