Jeroen Codée

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8871322/publications.pdf

Version: 2024-02-01

207 papers 7,497 citations

57758 44 h-index 79698 73 g-index

223 all docs 223 docs citations

times ranked

223

5027 citing authors

#	Article	IF	CITATIONS
1	Hydrogen bond activated glycosylation under mild conditions. Chemical Science, 2022, 13, 1600-1607.	7.4	14
2	Assembly of a Library of Pel-Oligosaccharides Featuring \hat{l}_{\pm} -Glucosamine and \hat{l}_{\pm} -Galactosamine Linkages. Frontiers in Chemistry, 2022, 10, 842238.	3.6	2
3	Synthesis of broad-specificity activity-based probes for <i>exo</i> -β-mannosidases. Organic and Biomolecular Chemistry, 2022, 20, 877-886.	2.8	4
4	Mimetics of ADP-Ribosylated Histidine through Copper(I)-Catalyzed Click Chemistry. Organic Letters, 2022, 24, 3776-3780.	4.6	7
5	Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chemical Reviews, 2022, 122, 15672-15716.	47.7	63
6	Stabilization of Glucosyl Dioxolenium lons by "Dual Participation―of the 2,2-Dimethyl-2-(<i>ortho</i> -nitrophenyl)acetyl (DMNPA) Protection Group for 1,2- <i>cis</i> -Glucosylation. Journal of Organic Chemistry, 2022, 87, 9139-9147.	3.2	11
7	Lipid A analog CRX-527 conjugated to synthetic peptides enhances vaccination efficacy and tumor control. Npj Vaccines, 2022, 7, .	6.0	3
8	Chemical Synthesis and Immunological Evaluation of Fragments of the Multiantennary Group-Specific Polysaccharide of Group B <i>Streptococcus</i> . Jacs Au, 2022, 2, 1724-1735.	7.9	10
9	Simplified Monopalmitoyl Tollâ€like Receptor 2 Ligand Miniâ€UPam for Selfâ€Adjuvanting Neoantigenâ€Based Synthetic Cancer Vaccines. ChemBioChem, 2021, 22, 1215-1222.	2.6	5
10	Reactivity–Stereoselectivity Mapping for the Assembly of Mycobacterium marinum Lipooligosaccharides. Angewandte Chemie, 2021, 133, 950-958.	2.0	6
11	Multivalent, Stabilized Mannoseâ€6â€Phosphates for the Targeted Delivery of Tollâ€Like Receptor Ligands and Peptide Antigens. ChemBioChem, 2021, 22, 434-440.	2.6	6
12	Reactivity–Stereoselectivity Mapping for the Assembly of <i>Mycobacterium marinum</i> Lipooligosaccharides. Angewandte Chemie - International Edition, 2021, 60, 937-945.	13.8	16
13	Synthesis of Uronic Acid Containing Oligosaccharides. , 2021, , 200-227.		1
14	On the Origin of Regioselectivity in Palladiumâ€Catalyzed Oxidation of Glucosides. European Journal of Organic Chemistry, 2021, 2021, 632-636.	2.4	14
15	Stereoelectronic Effects in Glycosylation Reactions. , 2021, , 83-102.		3
16	Activity-Based Protein Profiling of Retaining α-Amylases in Complex Biological Samples. Journal of the American Chemical Society, 2021, 143, 2423-2432.	13.7	17
17	How Lewis Acids Catalyze Ring-Openings of Cyclohexene Oxide. Journal of Organic Chemistry, 2021, 86, 3565-3573.	3.2	28
18	Cysteine Nucleophiles in Glycosidase Catalysis: Application of a Covalent βâ€∢scp>lâ€∢/scp>Arabinofuranosidase Inhibitor. Angewandte Chemie - International Edition, 2021, 60, 5754-5758.	13.8	16

#	Article	IF	CITATIONS
19	Cysteine Nucleophiles in Glycosidase Catalysis: Application of a Covalent βâ€∢scp>lâ€∢/scp>Arabinofuranosidase Inhibitor. Angewandte Chemie, 2021, 133, 5818-5822.	2.0	3
20	Impact of Glycan Linkage to <i>Staphylococcus aureus</i> Wall Teichoic Acid on Langerin Recognition and Langerhans Cell Activation. ACS Infectious Diseases, 2021, 7, 624-635.	3.8	16
21	Synthetic Phenolic Glycolipids for Application in Diagnostic Tests for Leprosy. ChemBioChem, 2021, 22, 1487-1493.	2.6	6
22	Synthetic (<i>N</i> , <i>N</i> -Dimethyl)doxorubicin Glycosyl Diastereomers to Dissect Modes of Action of Anthracycline Anticancer Drugs. Journal of Organic Chemistry, 2021, 86, 5757-5770.	3.2	12
23	Tuning the Transglycosylation Reaction of a GH11 Xylanase by a Delicate Enhancement of its Thumb Flexibility. ChemBioChem, 2021, 22, 1743-1749.	2.6	11
24	High avidity drives the interaction between the streptococcal C1 phage endolysin, PlyC, with the cell surface carbohydrates of Group A <i>Streptococcus</i> . Molecular Microbiology, 2021, 116, 397-415.	2.5	9
25	Synthesis and Antibody Binding Studies of Schistosome-Derived Oligo-α-(1-2)-l-Fucosides. Molecules, 2021, 26, 2246.	3.8	1
26	Development of Nonâ€Hydrolysable Oligosaccharide Activityâ€Based Inactivators for Endoglycanases: A Case Study on αâ€1,6 Mannanases. Chemistry - A European Journal, 2021, 27, 9519-9523.	3.3	2
27	(Automated) Synthesis of Wellâ€defined <i>Staphylococcus Aureus</i> Wall Teichoic Acid Fragments. Chemistry - A European Journal, 2021, 27, 10461-10469.	3.3	10
28	Epitope Recognition of a Monoclonal Antibody Raised against a Synthetic Glycerol Phosphate Based Teichoic Acid. ACS Chemical Biology, 2021, 16, 1344-1349.	3.4	4
29	Rational design of a hydrolysis-resistant mycobacterial phosphoglycolipid antigen presented by CD1c to T cells. Journal of Biological Chemistry, 2021, 297, 101197.	3.4	5
30	Developments in the Synthesis of Mycobacterial Phenolic Glycolipids. Chemical Record, 2021, 21, 3295-3312.	5.8	1
31	Generation of glucosylated <i>sn</i> -1-glycerolphosphate teichoic acids: glycerol stereochemistry affects synthesis and antibody interaction. RSC Chemical Biology, 2021, 2, 187-191.	4.1	4
32	Single-molecule imaging of glycan–lectin interactions on cells with Glyco-PAINT. Nature Chemical Biology, 2021, 17, 1281-1288.	8.0	19
33	An Orthogonally Protected Cyclitol for the Construction of Nigerose- and Dextran-Mimetic Cyclophellitols. Organic Letters, 2021, 23, 9516-9519.	4.6	2
34	Synthesis of 2-azido-2-deoxy- and 2-acetamido-2-deoxy-D-manno derivatives as versatile building blocks. Carbohydrate Research, 2020, 488, 107900.	2.3	6
35	Doxorubicin and Aclarubicin: Shuffling Anthracycline Glycans for Improved Anticancer Agents. Journal of Medicinal Chemistry, 2020, 63, 12814-12829.	6.4	27
36	Self-Adjuvanting Cancer Vaccines from Conjugation-Ready Lipid A Analogues and Synthetic Long Peptides. Journal of Medicinal Chemistry, 2020, 63, 11691-11706.	6.4	28

#	Article	IF	CITATIONS
37	Targeting of the C-Type Lectin Receptor Langerin Using Bifunctional Mannosylated Antigens. Frontiers in Cell and Developmental Biology, 2020, 8, 556.	3.7	13
38	Glycosylated cyclophellitol-derived activity-based probes and inhibitors for cellulases. RSC Chemical Biology, 2020, 1, 148-155.	4.1	13
39	A stabilized glycomimetic conjugate vaccine inducing protective antibodies against Neisseria meningitidis serogroup A. Nature Communications, 2020, 11, 4434.	12.8	18
40	Synthetic Oligomers Mimicking Capsular Polysaccharide Diheteroglycan are Potential Vaccine Candidates against Encapsulated <i>Enterococcal</i> Infections. ACS Infectious Diseases, 2020, 6, 1816-1826.	3.8	12
41	Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation. Nature Communications, 2020, 11, 2450.	12.8	38
42	Synthesis of Stable NAD + Mimics as Inhibitors for the Legionella pneumophila Phosphoribosyl Ubiquitylating Enzyme SdeC. ChemBioChem, 2020, 21, 2903-2907.	2.6	6
43	Synthesis of C â€Glycosyl Amino Acid Building Blocks Suitable for the Solidâ€Phase Synthesis of Multivalent Glycopeptide Mimics. European Journal of Organic Chemistry, 2020, 2020, 5126-5139.	2.4	6
44	Synthesis and Structural Analysis of Aspergillus fumigatus Galactosaminogalactans Featuring αâ€Galactose, αâ€Galactosamine and α―N â€Acetyl Galactosamine Linkages. Angewandte Chemie, 2020, 132, 12846-12850.	2.0	4
45	Reagent Controlled Glycosylations for the Assembly of Well-Defined Pel Oligosaccharides. Journal of Organic Chemistry, 2020, 85, 15872-15884.	3.2	19
46	Characterization of glycosyl dioxolenium ions and their role in glycosylation reactions. Nature Communications, 2020, 11, 2664.	12.8	83
47	Regioselectivity of Epoxide Ringâ€Openings via S _N 2 Reactions Under Basic and Acidic Conditions. European Journal of Organic Chemistry, 2020, 2020, 3822-3828.	2.4	40
48	Dynamics of Ligand Binding to a Rigid Glycosidase**. Angewandte Chemie, 2020, 132, 20689-20695.	2.0	0
49	Dynamics of Ligand Binding to a Rigid Glycosidase**. Angewandte Chemie - International Edition, 2020, 59, 20508-20514.	13.8	4
50	Fluorogenic Bifunctional trans â€Cyclooctenes as Efficient Tools for Investigating Clickâ€toâ€Release Kinetics. Chemistry - A European Journal, 2020, 26, 9900-9904.	3.3	7
51	Synthesis of orthogonally protected and functionalized bacillosamines. Organic and Biomolecular Chemistry, 2020, 18, 2834-2837.	2.8	7
52	Manno- <i>epi</i> -cyclophellitols Enable Activity-Based Protein Profiling of Human α-Mannosidases and Discovery of New Golgi Mannosidase II Inhibitors. Journal of the American Chemical Society, 2020, 142, 13021-13029.	13.7	24
53	Synthetic teichoic acid chemistry for vaccine applications. , 2020, , 207-238.		2
54	Reagent controlled stereoselective synthesis of teichoic acid \hat{l}_{\pm} -(1,2)-glucans. Organic and Biomolecular Chemistry, 2020, 18, 2038-2050.	2.8	5

#	Article	IF	CITATIONS
55	<i>C</i> -Mannosyl Lysine for Solid Phase Assembly of Mannosylated Peptide Conjugate Cancer Vaccines. ACS Chemical Biology, 2020, 15, 728-739.	3.4	16
56	Rational Design of Mechanism-Based Inhibitors and Activity-Based Probes for the Identification of Retaining α- <scp>I</scp> -Arabinofuranosidases. Journal of the American Chemical Society, 2020, 142, 4648-4662.	13.7	33
57	Synthesis and Structural Analysis of <i>Aspergillus fumigatus</i> Galactosaminogalactans Featuring αâ€Galactose, αâ€Galactosamine and αâ€ <i>N</i> â€Acetyl Galactosamine Linkages. Angewandte Chemie - International Edition, 2020, 59, 12746-12750.	13.8	28
58	Synthetic carbohydrate-based cell wall components from Staphylococcus aureus. Drug Discovery Today: Technologies, 2020, 38, 35-43.	4.0	4
59	Elucidating the Ordering in Self-Assembled Glycocalyx Mimicking Supramolecular Copolymers in Water. Journal of the American Chemical Society, 2019, 141, 13877-13886.	13.7	47
60	Ega3 from the fungal pathogen Aspergillus fumigatus is an endo-α-1,4-galactosaminidase that disrupts microbial biofilms. Journal of Biological Chemistry, 2019, 294, 13833-13849.	3.4	35
61	α- <scp>d</scp> -Gal-cyclophellitol cyclosulfamidate is a Michaelis complex analog that stabilizes therapeutic lysosomal α-galactosidase A in Fabry disease. Chemical Science, 2019, 10, 9233-9243.	7.4	11
62	Computational and NMR Studies on the Complexation of Lithium Ion to 8 rownâ€4. ChemPhysChem, 2019, 20, 2103-2109.	2.1	15
63	Acceptor reactivity in glycosylation reactions. Chemical Society Reviews, 2019, 48, 4688-4706.	38.1	114
64	Synthetic, Zwitterionic Sp1 Oligosaccharides Adopt a Helical Structure Crucial for Antibody Interaction. ACS Central Science, 2019, 5, 1407-1416.	11.3	52
65	Do not discard Staphylococcus aureus WTA as a vaccine antigen. Nature, 2019, 572, E1-E2.	27.8	35
66	Regioselective Glycosylation Strategies for the Synthesis of Group Ia and Ib Streptococcus Related Glycans Enable Elucidating Unique Conformations of the Capsular Polysaccharides. Chemistry - A European Journal, 2019, 25, 16277-16287.	3.3	15
67	Dual-Participation Protecting Group Solves the Anomeric Stereocontrol Problems in Glycosylation Reactions. Organic Letters, 2019, 21, 8713-8717.	4.6	27
68	1â€Picolinylâ€5â€azido Thiosialosides: Versatile Donors for the Stereoselective Construction of Sialyl Linkages. Angewandte Chemie, 2019, 131, 17156-17164.	2.0	5
69	1â€Picolinylâ€5â€azido Thiosialosides: Versatile Donors for the Stereoselective Construction of Sialyl Linkages. Angewandte Chemie - International Edition, 2019, 58, 17000-17008.	13.8	19
70	Systematic Dual Targeting of Dendritic Cell C-Type Lectin Receptor DC-SIGN and TLR7 Using a Trifunctional Mannosylated Antigen. Frontiers in Chemistry, 2019, 7, 650.	3.6	37
71	Molecular mechanism of Aspergillus fumigatus biofilm disruption by fungal and bacterial glycoside hydrolases. Journal of Biological Chemistry, 2019, 294, 10760-10772.	3.4	50
72	Dynamic and Functional Profiling of Xylan-Degrading Enzymes in <i>Aspergillus</i> Secretomes Using Activity-Based Probes. ACS Central Science, 2019, 5, 1067-1078.	11.3	34

#	Article	IF	Citations
73	Defining the S _N 1 Side of Glycosylation Reactions: Stereoselectivity of Glycopyranosyl Cations. ACS Central Science, 2019, 5, 781-788.	11.3	84
74	Dual Synthetic Peptide Conjugate Vaccine Simultaneously Triggers TLR2 and NOD2 and Activates Human Dendritic Cells. Bioconjugate Chemistry, 2019, 30, 1150-1161.	3.6	24
7 5	Furanosyl Oxocarbenium Ion Conformational Energy Landscape Maps as a Tool to Study the Glycosylation Stereoselectivity of 2â€Azidofuranoses, 2â€Fluorofuranoses and Methyl Furanosyl Uronates. Chemistry - A European Journal, 2019, 25, 7149-7157.	3.3	26
76	Peptides conjugated to 2-alkoxy-8-oxo-adenine as potential synthetic vaccines triggering TLR7. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1340-1344.	2.2	17
77	Functionalized Cyclophellitols Are Selective Glucocerebrosidase Inhibitors and Induce a Bona Fide Neuropathic Gaucher Model in Zebrafish. Journal of the American Chemical Society, 2019, 141, 4214-4218.	13.7	28
78	Synthesis of Glycosylated 1â€Deoxynojirimycins Starting from Natural and Synthetic Disaccharides. European Journal of Organic Chemistry, 2019, 2019, 118-129.	2.4	8
79	Direct Stereoselective Aziridination of Cyclohexenols with 3â€Aminoâ€2â€(trifluoromethyl)quinazolinâ€4(3 <i>H</i>)â€one in the Synthesis of Cyclitol Aziridine Glycosidase Inhibitors. European Journal of Organic Chemistry, 2019, 2019, 1397-1404.	2.4	5
80	Synthesis, Reactivity, and Stereoselectivity of 4-Thiofuranosides. Journal of Organic Chemistry, 2019, 84, 1218-1227.	3.2	20
81	Reagent Controlled Stereoselective Assembly of αâ€(1,3)â€Glucans. European Journal of Organic Chemistry, 2019, 2019, 1994-2003.	2.4	16
82	Mapping the Relationship between Glycosyl Acceptor Reactivity and Glycosylation Stereoselectivity. Angewandte Chemie, 2018, 130, 8372-8376.	2.0	32
83	Mapping the Relationship between Glycosyl Acceptor Reactivity and Glycosylation Stereoselectivity. Angewandte Chemie - International Edition, 2018, 57, 8240-8244.	13.8	83
84	Streamlined Synthesis and Evaluation of Teichoic Acid Fragments. Chemistry - A European Journal, 2018, 24, 4014-4018.	3.3	18
85	Synthesis of Carba yclophellitols: a New Class of Carbohydrate Mimetics. European Journal of Organic Chemistry, 2018, 2018, 2504-2517.	2.4	4
86	Gluco-1 <i>H</i> -imidazole: A New Class of Azole-Type \hat{I}^2 -Glucosidase Inhibitor. Journal of the American Chemical Society, 2018, 140, 5045-5048.	13.7	17
87	Reagent Controlled Stereoselective Synthesis of α-Glucans. Journal of the American Chemical Society, 2018, 140, 4632-4638.	13.7	90
88	Linking T cell epitopes to a common linear B cell epitope: A targeting and adjuvant strategy to improve T cell responses. Molecular Immunology, 2018, 93, 115-124.	2.2	15
89	Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity. Nature, 2018, 563, 705-709.	27.8	137
90	New Irreversible αâ€ <scp>l</scp> â€lduronidase Inhibitors and Activityâ€Based Probes. Chemistry - A European Journal, 2018, 24, 19081-19088.	3.3	9

#	Article	IF	Citations
91	Fast and pHâ€Independent Elimination of <i>trans</i> àê€Cyclooctene by Using Aminoethylâ€Functionalized Tetrazines. Chemistry - A European Journal, 2018, 24, 18075-18081.	3.3	26
92	Spiroâ€epoxyglycosides as Activityâ€Based Probes for Glycoside Hydrolase Family 99 Endomannosidase/Endomannanase. Chemistry - A European Journal, 2018, 24, 9983-9992.	3.3	9
93	Two-step activity-based protein profiling of diacylglycerol lipase. Organic and Biomolecular Chemistry, 2018, 16, 5250-5253.	2.8	6
94	Formation of Immune Complexes with a Tetanus-Derived B Cell Epitope Boosts Human T Cell Responses to Covalently Linked Peptides in an Ex Vivo Blood Loop System. Journal of Immunology, 2018, 201, 87-97.	0.8	16
95	Titelbild: Mapping the Relationship between Glycosyl Acceptor Reactivity and Glycosylation Stereoselectivity (Angew. Chem. 27/2018). Angewandte Chemie, 2018, 130, 8033-8033.	2.0	0
96	Simultaneous quantitation of sphingoid bases by UPLC-ESI-MS/MS with identical 13 C-encoded internal standards. Clinica Chimica Acta, 2017, 466, 178-184.	1.1	34
97	Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin. Journal of the American Chemical Society, 2017, 139, 4157-4167.	13.7	86
98	Stereoselectivity of Conformationally Restricted Glucosazide Donors. Journal of Organic Chemistry, 2017, 82, 4793-4811.	3.2	48
99	Synthesis of the <i>Staphylococcus aureus</i> Strain M Capsular Polysaccharide Repeating Unit. Organic Letters, 2017, 19, 2514-2517.	4.6	45
100	Carba-cyclophellitols Are Neutral Retaining-Glucosidase Inhibitors. Journal of the American Chemical Society, 2017, 139, 6534-6537.	13.7	24
101	Conformational Behaviour of Azasugars Based on Mannuronic Acid. ChemBioChem, 2017, 18, 1297-1304.	2.6	7
102	Mapping the Reactivity and Selectivity of 2-Azidofucosyl Donors for the Assembly of <i>N</i> -Acetylfucosamine-Containing Bacterial Oligosaccharides. Journal of Organic Chemistry, 2017, 82, 848-868.	3.2	46
103	Teichoic acids: synthesis and applications. Chemical Society Reviews, 2017, 46, 1464-1482.	38.1	50
104	Synthetic zwitterionic polysaccharides. Current Opinion in Chemical Biology, 2017, 40, 95-101.	6.1	17
105	Chemical synthesis of guanosine diphosphate mannuronic acid (GDP-ManA) and its C-4-O-methyl and C-4-deoxy congeners. Carbohydrate Research, 2017, 450, 12-18.	2.3	11
106	Cyanopivaloyl Ester in the Automated Solid-Phase Synthesis of Oligorhamnans. Journal of Organic Chemistry, 2017, 82, 12992-13002.	3.2	23
107	Towards broad spectrum activity-based glycosidase probes: synthesis and evaluation of deoxygenated cyclophellitol aziridines. Chemical Communications, 2017, 53, 12528-12531.	4.1	27
108	1,6-Cyclophellitol Cyclosulfates: A New Class of Irreversible Glycosidase Inhibitor. ACS Central Science, 2017, 3, 784-793.	11.3	43

#	Article	IF	CITATIONS
109	Structural Characterization of Biofunctionalized Gold Nanoparticles by Ultrahigh-Resolution Mass Spectrometry. ACS Nano, 2017, 11, 8257-8264.	14.6	45
110	The influence of acceptor nucleophilicity on the glycosylation reaction mechanism. Chemical Science, 2017, 8, 1867-1875.	7.4	130
111	Activity-based probes for functional interrogation of retaining \hat{l}^2 -glucuronidases. Nature Chemical Biology, 2017, 13, 867-873.	8.0	76
112	Lipophilic Muramyl Dipeptide–Antigen Conjugates as Immunostimulating Agents. ChemMedChem, 2016, 11, 190-198.	3.2	19
113	On the Reactivity of Gulose and Guluronic Acid Building Blocks in the Context of Alginate Assembly. European Journal of Organic Chemistry, 2016, 2016, 2393-2397.	2.4	10
114	The Synthesis of Cyclophellitolâ€Aziridine and Its Configurational and Functional Isomers. European Journal of Organic Chemistry, 2016, 2016, 3671-3678.	2.4	14
115	Detection of Active Mammalian GH31 α-Glucosidases in Health and Disease Using In-Class, Broad-Spectrum Activity-Based Probes. ACS Central Science, 2016, 2, 351-358.	11.3	45
116	The Cyanopivaloyl Ester: A Protecting Group in the Assembly of Oligorhamnans. European Journal of Organic Chemistry, 2016, 2016, 5282-5293.	2.4	16
117	A Divergent Synthesis of <scp>l</scp> â€ <i>arabino</i> ―and <scp>d</scp> â€ <i>xylo</i> configured Cyclophellitol Epoxides and Aziridines. European Journal of Organic Chemistry, 2016, 2016, 4787-4794.	2.4	19
118	Accurate quantification of sphingosine-1-phosphate in normal and Fabry disease plasma, cells and tissues by LC-MS/MS with 13 C-encoded natural S1P as internal standard. Clinica Chimica Acta, 2016, 459, 36-44.	1,1	12
119	Synthesis of E. faecium wall teichoic acid fragments. Bioorganic and Medicinal Chemistry, 2016, 24, 3893-3907.	3.0	16
120	Acceptor Reactivity in the Total Synthesis of Alginate Fragments Containing αâ€ <scp>L</scp> â€Guluronic Acid and βâ€ <scp>D</scp> â€Mannuronic Acid. Angewandte Chemie - International Edition, 2015, 54, 7670-7673	3. ^{13.8}	40
121	Comparing Cyclophellitol <i>N</i> â€Alkyl and <i>N</i> â€Acyl Cyclophellitol Aziridines as Activityâ€Based Glycosidase Probes. Chemistry - A European Journal, 2015, 21, 10861-10869.	3.3	21
122	Synthesis and Evaluation of Hybrid Structures Composed of Two Glucosylceramide Synthase Inhibitors. ChemMedChem, 2015, 10, 2042-2062.	3.2	10
123	Targeted Delivery of Fluorescent Highâ€Mannoseâ€Type Oligosaccharide Cathepsin Inhibitor Conjugates. ChemPlusChem, 2015, 80, 928-937.	2.8	9
124	Chemoselective Cleavage of <i>p</i> -Methoxybenzyl and 2-Naphthylmethyl Ethers Using a Catalytic Amount of HCl in Hexafluoro-2-propanol. Journal of Organic Chemistry, 2015, 80, 8796-8806.	3.2	57
125	Synthesis of 6-Hydroxysphingosine and α-Hydroxy Ceramide Using a Cross-Metathesis Strategy. Journal of Organic Chemistry, 2015, 80, 7258-7265.	3.2	17
126	Stereoselectivity in the Lewis Acid Mediated Reduction of Ketofuranoses. Journal of Organic Chemistry, 2015, 80, 4553-4565.	3.2	28

#	Article	IF	Citations
127	Synthesis of a Panel of Carbonâ€13â€Labelled (Glyco)Sphingolipids. European Journal of Organic Chemistry, 2015, 2015, 2661-2677.	2.4	21
128	In vitro and in vivo comparative and competitive activity-based protein profiling of GH29 α- <scp>l</scp> -fucosidases. Chemical Science, 2015, 6, 2782-2789.	7.4	44
129	Synthetic Teichoic Acid Conjugate Vaccine against Nosocomial Gram-Positive Bacteria. PLoS ONE, 2014, 9, e110953.	2.5	33
130	Design, automated synthesis and immunological evaluation of NOD2-ligand–antigen conjugates. Beilstein Journal of Organic Chemistry, 2014, 10, 1445-1453.	2.2	9
131	P. aeruginosa SGNH Hydrolase-Like Proteins AlgJ and AlgX Have Similar Topology but Separate and Distinct Roles in Alginate Acetylation. PLoS Pathogens, 2014, 10, e1004334.	4.7	54
132	A Sensitive Gel-based Method Combining Distinct Cyclophellitol-based Probes for the Identification of Acid/Base Residues in Human Retaining I ² -Glucosidases. Journal of Biological Chemistry, 2014, 289, 35351-35362.	3.4	20
133	Design and synthesis of 4′-O-alkyl-chitobiosyl-4-methylumbelliferone as human chitinase fluorogenic substrates. Carbohydrate Research, 2014, 399, 26-37.	2.3	1
134	Furanosyl Oxocarbenium Ion Stability and Stereoselectivity. Angewandte Chemie - International Edition, 2014, 53, 10381-10385.	13.8	64
135	From Covalent Glycosidase Inhibitors to Activityâ€Based Glycosidase Probes. Chemistry - A European Journal, 2014, 20, 10864-10872.	3.3	44
136	Catalytic Mechanism and Mode of Action of the Periplasmic Alginate Epimerase AlgG. Journal of Biological Chemistry, 2014, 289, 6006-6019.	3.4	39
137	Synthesis of α―and βâ€Galactopyranoseâ€Configured Isomers of Cyclophellitol and Cyclophellitol Aziridine. European Journal of Organic Chemistry, 2014, 2014, 6044-6056.	2.4	17
138	Synthesis of Cyclophellitol, Cyclophellitol Aziridine, and Their Tagged Derivatives. European Journal of Organic Chemistry, 2014, 2014, 6030-6043.	2.4	28
139	$\langle i \rangle N \langle i \rangle$ -Tetradecylcarbamyl Lipopeptides as Novel Agonists for Toll-like Receptor 2. Journal of Medicinal Chemistry, 2014, 57, 6873-6878.	6.4	31
140	Potent and Selective Activity-Based Probes for GH27 Human Retaining α-Galactosidases. Journal of the American Chemical Society, 2014, 136, 11622-11625.	13.7	45
141	Exploring functional cyclophellitol analogues as human retaining beta-glucosidase inhibitors. Organic and Biomolecular Chemistry, 2014, 12, 7786-7791.	2.8	24
142	Activation of Glycosyl Halides by Halogen Bonding. Chemistry - an Asian Journal, 2014, 9, 2095-2098.	3.3	58
143	A Secondâ€Generation Tandem Ringâ€Closing Metathesis Cleavable Linker for Solidâ€Phase Oligosaccharide Synthesis. European Journal of Organic Chemistry, 2013, 2013, 6644-6655.	2.4	20
144	Chair interconversion and reactivity of mannuronic acid esters. Organic and Biomolecular Chemistry, 2013, 11, 8127.	2.8	20

#	Article	IF	CITATIONS
145	Structural and Functional Characterization of Pseudomonas aeruginosa AlgX. Journal of Biological Chemistry, 2013, 288, 22299-22314.	3.4	48
146	On the reactivity and selectivity of donor glycosides in glycochemistry and glycobiology: trapped covalent intermediates. Chemical Science, 2013, 4, 897-906.	7.4	35
147	Influence of O6 in Mannosylations Using Benzylidene Protected Donors: Stereoelectronic or Conformational Effects?. Journal of Organic Chemistry, 2013, 78, 2191-2205.	3.2	41
148	Quantification of Globotriaosylsphingosine in Plasma and Urine of Fabry Patients by Stable Isotope Ultraperformance Liquid Chromatography–Tandem Mass Spectrometry. Clinical Chemistry, 2013, 59, 547-556.	3.2	85
149	2,2-Dimethyl-4-(4-methoxy-phenoxy) butanoate and 2,2-Dimethyl-4-azido Butanoate: Two New Pivaloate-ester-like Protecting Groups. Organic Letters, 2013, 15, 2270-2273.	4.6	19
150	Chiral Pyrroline-Based Ugi-Three-Component Reactions Are under Kinetic Control. Organic Letters, 2013, 15, 3026-3029.	4.6	29
151	Protection Against Staphylococcus aureus by Antibody to the Polyglycerolphosphate Backbone of Heterologous Lipoteichoic Acid. Journal of Infectious Diseases, 2012, 205, 1076-1085.	4.0	38
152	Total Synthesis of the Triglycosyl Phenolic Glycolipid PGLâ€tb1 from <i>Mycobacterium tuberculosis</i> . Angewandte Chemie - International Edition, 2012, 51, 11774-11777.	13.8	27
153	Novel Activityâ€Based Probes for Broadâ€Spectrum Profiling of Retaining βâ€Exoglucosidases Inâ€Situ and Inâ€Vivo. Angewandte Chemie - International Edition, 2012, 51, 12529-12533.	13.8	104
154	Exploring and Exploiting the Reactivity of Glucuronic Acid Donors. Journal of Organic Chemistry, 2012, 77, 108-125.	3.2	31
155	On the Reactivity and Selectivity of Galacturonic Acid Lactones. European Journal of Organic Chemistry, 2012, 2012, 5729-5737.	2.4	18
156	Fluorous Linker Facilitated Synthesis of Teichoic Acid Fragments. Organic Letters, 2012, 14, 848-851.	4.6	27
157	Rýcktitelbild: Automated Solid-Phase Synthesis of β-Mannuronic Acid Alginates (Angew. Chem. 18/2012). Angewandte Chemie, 2012, 124, 4570-4570.	2.0	O
158	Automated Solidâ€Phase Synthesis of βâ€Mannuronic Acid Alginates. Angewandte Chemie - International Edition, 2012, 51, 4393-4396.	13.8	95
159	Back Cover: Automated Solid-Phase Synthesis of β-Mannuronic Acid Alginates (Angew. Chem. Int. Ed.) Tj ETQq1 1	9.7.84314 13.8	1 rgBT /Ove
160	Automated Solid-Phase Synthesis of Hyaluronan Oligosaccharides. Organic Letters, 2012, 14, 3776-3779.	4.6	77
161	Multigram-scale synthesis of an orthogonally protected 2-acetamido-4-amino-2,4,6-trideoxy-d-galactose (AAT) building block. Carbohydrate Research, 2012, 356, 282-287.	2.3	21
162	Light fluorous synthesis of glucosylated glycerol teichoic acids. Carbohydrate Research, 2012, 356, 142-151.	2.3	16

#	Article	IF	CITATIONS
163	Automated solid phase synthesis of teichoic acids. Chemical Communications, 2011, 47, 8961.	4.1	17
164	Galacturonic Acid Lactones in the Synthesis of All Trisaccharide Repeating Units of the Zwitterionic Polysaccharide Sp1. Journal of Organic Chemistry, 2011, 76, 1692-1706.	3.2	43
165	Mannopyranosyl Uronic Acid Donor Reactivity. Organic Letters, 2011, 13, 4360-4363.	4.6	42
166	Stereoselective Synthesis of 2,3-Diamino-2,3-dideoxy- \hat{l}^2 -d-mannopyranosyl Uronates. Journal of Organic Chemistry, 2011, 76, 7301-7315.	3.2	33
167	A Concise Synthesis of Globotriaosylsphingosine. European Journal of Organic Chemistry, 2011, 2011, 1652-1663.	2.4	17
168	Activityâ€Based Profiling of Retaining βâ€Glucosidases: A Comparative Study. ChemBioChem, 2011, 12, 1263-1269.	2.6	32
169	A practical synthesis of capped 4-methylumbelliferyl hyaluronan disaccharides and tetrasaccharides as potential hyaluronidase substrates. Carbohydrate Research, 2011, 346, 1467-1478.	2.3	14
170	Novel protecting groups in carbohydrate chemistry. Comptes Rendus Chimie, 2011, 14, 178-193.	0.5	66
171	Mannuronic Acids: Reactivity and Selectivity. Journal of Carbohydrate Chemistry, 2011, 30, 438-457.	1.1	14
172	A Preparative Synthesis of Human Chitinase Fluorogenic Substrate (4′â€Deoxychitobiosyl)â€4â€methylumbelliferone. European Journal of Organic Chemistry, 2010, 2010, 2565-2570.	2.4	5
173	The methylsulfonylethoxymethyl (Msem) as a hydroxyl protecting group in oligosaccharide synthesis. Tetrahedron, 2010, 66, 6121-6132.	1.9	7
174	Synthesis of an \hat{I}_{\pm} -kojibiosyl substituted glycerol teichoic acid hexamer. Bioorganic and Medicinal Chemistry, 2010, 18, 3668-3678.	3.0	23
175	The impact of oxacarbenium ion conformers on the stereochemical outcome of glycosylations. Carbohydrate Research, 2010, 345, 1252-1263.	2.3	97
176	Uronic Acids in Oligosaccharide and Glycoconjugate Synthesis. Topics in Current Chemistry, 2010, 301, 253-289.	4.0	46
177	Mannosazide Methyl Uronate Donors. Glycosylating Properties and Use in the Construction of β-ManNAcA-Containing Oligosaccharides. Journal of Organic Chemistry, 2010, 75, 7990-8002.	3.2	42
178	Stereoselectivity of glycosylations of conformationally restricted mannuronate esters. Tetrahedron, 2009, 65, 3780-3788.	1.9	20
179	Methylsulfonylethoxycarbonyl (Msc) and fluorous propylsulfonylethoxycarbonyl (FPsc) as hydroxy-protecting groups in carbohydrate chemistry. Tetrahedron Letters, 2009, 50, 2185-2188.	1.4	24
180	Synthesis of Hyaluronic Acid Oligomers using Chemoselective and One-Pot Strategies. Journal of Organic Chemistry, 2009, 74, 4208-4216.	3.2	44

#	Article	IF	CITATIONS
181	Equatorial Anomeric Triflates from Mannuronic Acid Esters. Journal of the American Chemical Society, 2009, 131, 12080-12081.	13.7	73
182	The Stereodirecting Effect of the Glycosyl C5-Carboxylate Ester: Stereoselective Synthesis of \hat{l}^2 -Mannuronic Acid Alginates. Journal of Organic Chemistry, 2009, 74, 38-47.	3.2	77
183	Stereodirecting Effect of the Pyranosyl C-5 Substituent in Glycosylation Reactions. Journal of Organic Chemistry, 2009, 74, 4982-4991.	3.2	79
184	Automated Solidâ€Phase Synthesis of Protected Oligosaccharides Containing βâ€Mannosidic Linkages. Chemistry - A European Journal, 2008, 14, 3987-3994.	3.3	86
185	Stereoselective Synthesis of <scp>L</scp> â€Guluronic Acid Alginates. Chemistry - A European Journal, 2008, 14, 9400-9411.	3.3	45
186	Synthesis of Sugar Nucleotides by Application of Phosphoramidites. Journal of Organic Chemistry, 2008, 73, 9458-9460.	3.2	54
187	Synthesis of Hyaluronic Acid Oligomers Using Ph2SO/Tf2O-Mediated Glycosylations. Journal of Organic Chemistry, 2007, 72, 5737-5742.	3.2	42
188	Oligosaccharide Synthesis in Microreactors. Organic Letters, 2007, 9, 2285-2288.	4.6	95
189	Uronic Acids in Oligosaccharide Synthesis. European Journal of Organic Chemistry, 2007, 2007, 3963-3976.	2.4	75
190	The use of cyclic bifunctional protecting groups in oligosaccharide synthesis—an overview. Carbohydrate Research, 2007, 342, 419-429.	2.3	66
191	Sequential Glycosylation Strategies: A Focus on Thioglycosides as Donors and Acceptors. ACS Symposium Series, 2007, , 190-208.	0.5	8
192	Microreactors as Tools for Synthetic Chemistsâ€"The Chemists' Round-Bottomed Flask of the 21st Century?. Chemistry - A European Journal, 2006, 12, 8434-8442.	3.3	433
193	Microreactor Synthesis of β-Peptides. Angewandte Chemie - International Edition, 2006, 45, 7000-7003.	13.8	100
194	Sulfonium Triflate Mediated Glycosidations of Aryl 2-Azido-2-deoxy-1-thio-D-mannosides. European Journal of Organic Chemistry, 2005, 2005, 918-924.	2.4	20
195	Synthesis of an αâ€Gal epitope αâ€Dâ€Galpâ€(1→3)â€Î²â€Dâ€Galpâ€(1→4)â€Î²â€Dâ€Glcp NAc–lipid conj Chemistry, 2005, 24, 755-769.	ugate. Jou	rnal of Carbo
196	Thioglycosides in sequential glycosylation strategies. Chemical Society Reviews, 2005, 34, 769.	38.1	300
197	Efficient Installation of \hat{l}^2 -Mannosides Using a Dehydrative Coupling Strategy. Organic Letters, 2005, 7, 3251-3254.	4.6	84
198	A Modular Strategy Toward the Synthesis of Heparin-like Oligosaccharides Using Monomeric Building Blocks in a Sequential Glycosylation Strategy. Journal of the American Chemical Society, 2005, 127, 3767-3773.	13.7	146

JEROEN CODéE

#	Article	lF	CITATIONS
199	Chemoselective glycosylations using sulfonium triflate activator systems. Tetrahedron, 2004, 60, 1057-1064.	1.9	123
200	The synthesis of well-defined heparin and heparan sulfate fragments. Drug Discovery Today: Technologies, 2004, 1, 317-326.	4.0	39
201	Thioglycuronides:  Synthesis and Application in the Assembly of Acidic Oligosaccharides. Organic Letters, 2004, 6, 2165-2168.	4.6	137
202	A novel strategy towards the synthesis of orthogonally functionalised 4-aminoglycosides. Organic and Biomolecular Chemistry, 2003, 1, 4160-4165.	2.8	20
203	Ph2SO/Tf2O:  a Powerful Promotor System in Chemoselective Glycosylations Using Thioglycosides. Organic Letters, 2003, 5, 1519-1522.	4.6	219
204	Sequential One-Pot Glycosylations Using 1-Hydroxyl and 1-Thiodonors. Organic Letters, 2003, 5, 1947-1950.	4.6	97
205	Radical Cyclization of Sugar-Derived β-(Alkynyloxy)acrylates:  Synthesis of Novel Fused Ethers. Organic Letters, 2000, 2, 1275-1277.	4.6	46
206	A versatile approach to the synthesis of highly functionalised carbocycles. Tetrahedron Letters, 1999, 40, 5063-5066.	1.4	33
207	A stereoselective and efficient route to (3S, 4R, 5S)-(+)-4,5-dihydroxycyclopent-1-en-3-ylamine: the side chain of the hypermodified nucleoside Q. Tetrahedron Letters, 1998, 39, 7987-7990.	1.4	38