## Jean-Charles Gabillard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8871207/publications.pdf Version: 2024-02-01



| #  | ARTICLE                                                                                                                                                                                                                                                                                      | IF                 | CITATIONS            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|
| 1  | Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cellular and<br>Molecular Life Sciences, 2014, 71, 4361-4371.                                                                                                                                                  | 2.4                | 297                  |
| 2  | Effect of refeeding on IGFI, IGFII, IGF receptors, FGF2, FGF6, and myostatin mRNA expression in rainbow trout myotomal muscle. General and Comparative Endocrinology, 2003, 132, 209-215.                                                                                                    | 0.8                | 181                  |
| 3  | Coordinated regulation of the GH/IGF system genes during refeeding in rainbow trout (Oncorhynchus) Tj ETQq1 I                                                                                                                                                                                | 0.78431<br>1.2     | 4 rgBT /Over         |
| 4  | An in vivo and in vitro assessment of TOR signaling cascade in rainbow trout ( <i>Oncorhynchus) Tj ETQq0 0 0 rgE<br/>295, R329-R335.</i>                                                                                                                                                     | BT /Overloo<br>0.9 | ck 10 Tf 50 6<br>153 |
| 5  | Role of insulin, insulin-like growth factors, and muscle regulatory factors in the compensatory growth of the trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 2007, 150, 462-472.                                                                                        | 0.8                | 115                  |
| 6  | Effects of environmental temperature on IGF1, IGF2, and IGF type I receptor expression in rainbow trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 2003, 133, 233-242.                                                                                                    | 0.8                | 112                  |
| 7  | Insulin-Like Growth Factor-Binding Protein (IGFBP)-1, -2, -3, -4, -5, and -6 and IGFBP-Related Protein 1<br>during Rainbow Trout Postvitellogenesis and Oocyte Maturation: Molecular Characterization,<br>Expression Profiles, and Hormonal Regulation. Endocrinology, 2006, 147, 2399-2410. | 1.4                | 100                  |
| 8  | Revisiting the paradigm of myostatin in vertebrates: Insights from fishes. General and Comparative<br>Endocrinology, 2013, 194, 45-54.                                                                                                                                                       | 0.8                | 69                   |
| 9  | Characterization of an extensive rainbow trout miRNA transcriptome by next generation sequencing.<br>BMC Genomics, 2016, 17, 164.                                                                                                                                                            | 1.2                | 69                   |
| 10 | Myomaker mediates fusion of fast myocytes in zebrafish embryos. Biochemical and Biophysical<br>Research Communications, 2014, 451, 480-484.                                                                                                                                                  | 1.0                | 68                   |
| 11 | In vitro characterization of proliferation and differentiation of trout satellite cells. Cell and Tissue Research, 2010, 342, 471-477.                                                                                                                                                       | 1.5                | 65                   |
| 12 | Myostatin inhibits proliferation but not differentiation of trout myoblasts. Molecular and Cellular<br>Endocrinology, 2012, 351, 220-226.                                                                                                                                                    | 1.6                | 52                   |
| 13 | Leucine limitation regulates myf5 and myoD expression and inhibits myoblast differentiation.<br>Experimental Cell Research, 2012, 318, 217-227.                                                                                                                                              | 1.2                | 48                   |
| 14 | Amino acids downregulate the expression of several autophagy-related genes in rainbow trout myoblasts. Autophagy, 2012, 8, 364-375.                                                                                                                                                          | 4.3                | 47                   |
| 15 | Differential expression of the two GH genes during embryonic development of rainbow troutoncorhynchus mykiss in relation with the IGFs system. Molecular Reproduction and Development, 2003, 64, 32-40.                                                                                      | 1.0                | 45                   |
| 16 | Myostatin induces atrophy of trout myotubes through inhibiting the TORC1 signaling and promoting<br>Ubiquitin–Proteasome and Autophagy-Lysosome degradative pathways. General and Comparative<br>Endocrinology, 2013, 186, 9-15.                                                             | 0.8                | 42                   |
| 17 | Environmental temperature increases plasma GH levels independently of nutritional status in rainbow trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 2003, 133, 17-26.                                                                                                    | 0.8                | 38                   |
| 18 | Effect of temperature on gene expression of the Gh/lgf system during embryonic development in rainbow trout (Oncorhynchus mykiss). The Journal of Experimental Zoology, 2003, 298A, 134-142.                                                                                                 | 1.4                | 36                   |

JEAN-CHARLES GABILLARD

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Differential expression of two GH receptor mRNAs following temperature change in rainbow trout<br>(Oncorhynchus mykiss). Journal of Endocrinology, 2006, 190, 29-37.                                                                                                  | 1.2 | 35        |
| 20 | Gene expression profile during proliferation and differentiation of rainbow trout adipocyte precursor cells. BMC Genomics, 2017, 18, 347.                                                                                                                             | 1.2 | 33        |
| 21 | Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages.<br>Journal of Visualized Experiments, 2014, , .                                                                                                                      | 0.2 | 31        |
| 22 | Influence of early postnatal cold exposure on myofiber maturation in pig skeletal muscle. Journal of<br>Muscle Research and Cell Motility, 2001, 22, 439-452.                                                                                                         | 0.9 | 28        |
| 23 | Aurora-C interacts with and phosphorylates the transforming acidic coiled-coil 1 protein.<br>Biochemical and Biophysical Research Communications, 2011, 408, 647-653.                                                                                                 | 1.0 | 26        |
| 24 | Autophagy in farm animals: current knowledge and future challenges. Autophagy, 2021, 17, 1809-1827.                                                                                                                                                                   | 4.3 | 19        |
| 25 | FoxO1 is not a key transcription factor in the regulation<br>of <i>myostatin</i> ( <i>mstn-1a</i> and <i>mstn-1b</i> ) gene expression in trout myotubes. American<br>Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R97-R104. | 0.9 | 16        |
| 26 | Gene expression profiling of trout regenerating muscle reveals common transcriptional signatures with hyperplastic growth zones of the post-embryonic myotome. BMC Genomics, 2016, 17, 810.                                                                           | 1.2 | 16        |
| 27 | miR-210 expression is associated with methionine-induced differentiation of trout satellite cells.<br>Journal of Experimental Biology, 2017, 220, 2932-2938.                                                                                                          | 0.8 | 16        |
| 28 | Evolutionary history and epigenetic regulation of the three paralogous pax7 genes in rainbow trout.<br>Cell and Tissue Research, 2015, 359, 715-727.                                                                                                                  | 1.5 | 14        |
| 29 | Dynamic expression of tgf-β2, tgf-β3 and inhibin βA during muscle growth resumption and satellite cell<br>differentiation in rainbow trout (Oncorhynchus mykiss). General and Comparative Endocrinology,<br>2015, 210, 23-29.                                         | 0.8 | 14        |
| 30 | Distribution of H3K27me3, H3K9me3, and H3K4me3 along autophagy-related genes highly expressed in starved zebrafish myotubes. Biology Open, 2017, 6, 1720-1725.                                                                                                        | 0.6 | 14        |
| 31 | Trout myomaker contains 14 minisatellites and two sequence extensions but retains fusogenic function. Journal of Biological Chemistry, 2019, 294, 6364-6374.                                                                                                          | 1.6 | 12        |
| 32 | The production of fluorescent transgenic trout to study in vitro myogenic cell differentiation. BMC<br>Biotechnology, 2010, 10, 39.                                                                                                                                   | 1.7 | 10        |
| 33 | Identification of TGF-β, inhibin βA and follistatin paralogs in the rainbow trout genome. Comparative<br>Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2014, 177-178, 46-55.                                                                    | 0.7 | 9         |
| 34 | Myomixer is expressed during embryonic and post-larval hyperplasia, muscle regeneration and differentiation of myoblats in rainbow trout (Oncorhynchus mykiss). Gene, 2021, 790, 145688.                                                                              | 1.0 | 7         |
| 35 | The IGF/IGFBP system in rainbow trout (Oncorhynchus mykiss) adipose tissue: expression related to regional localization and cell type. Fish Physiology and Biochemistry, 2011, 37, 843-852.                                                                           | 0.9 | 5         |
| 36 | Histological, transcriptomic and in vitro analysis reveal an intrinsic activated state of myogenic precursors in hyperplasic muscle of trout. BMC Genomics, 2018, 19, 865.                                                                                            | 1.2 | 4         |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Influence of circulating CH levels on CH-binding capacity measurements in the hepatic membrane of rainbow trout (Oncorhynchus mykiss): importance of normalization of results. Fish Physiology and Biochemistry, 2006, 32, 121-130. | 0.9 | 3         |
| 38 | Naa15 knockdown enhances c2c12 myoblast fusion and induces defects in zebrafish myotome<br>morphogenesis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology,<br>2019, 228, 61-67.                      | 0.7 | 1         |