Marco Pasian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8871088/publications.pdf Version: 2024-02-01

		430442	433756
111	1,287	18	31
papers	citations	h-index	g-index
		111	1116
111	111	111	1116
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Proof-of-Concept for a Ground-Based Dual-Receiver Radar Architecture to Estimate Snowpack Parameters for Wet Snow. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-9.	2.7	1
2	The variability of dielectric permittivity of biological tissues with water content. Journal of Electromagnetic Waves and Applications, 2022, 36, 48-68.	1.0	10
3	Numerical quantitative evaluation of the skin impact in breast cancer imaging at mm-waves. , 2022, , .		1
4	A Novel PIFA Antennas Design With Capacitive Load for Glacier Monitoring Applications. , 2022, , .		1
5	On the dielectric and mechanical characterization of tissueâ€mimicking breast phantoms. Physics in Medicine and Biology, 2022, 67, 155018.	1.6	3
6	Bi-modal tissue-mimicking breast phantoms: comparison between the performance of agar- and gelatin-based phantoms. , 2022, , .		2
7	Determination of Snow Water Equivalent for Dry Snowpacks Using the Multipath Propagation of Ground-Based Radars. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 276-280.	1.4	9
8	Enhancement of Penetration of Millimeter Waves by Field Focusing Applied to Breast Cancer Detection. IEEE Transactions on Biomedical Engineering, 2021, 68, 959-966.	2.5	16
9	Snow Layer Detection by Pattern Matching in a Multipath Radar Interference Scenario. International Journal of Remote Sensing, 2021, 42, 3193-3218.	1.3	2
10	Comparative Study on the Design of Dichroic Mirrors for the Upgrade to the K-band uplink channel for the ESA Deep Space Antennas. , 2021, , .		1
11	Applicability of the Langley Method for Non-Geostationary In-Orbit Satellite Effective Isotropic Radiated Power Estimation. IEEE Transactions on Antennas and Propagation, 2021, 69, 4935-4943.	3.1	1
12	Millimeter-Waves Breast Cancer Imaging via Inverse Scattering Techniques. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2021, 5, 246-253.	2.3	33
13	Experimental Validation on Tissue-Mimicking Phantoms of Millimeter-Wave Imaging for Breast Cancer Detection. Applied Sciences (Switzerland), 2021, 11, 432.	1.3	19
14	On the dielectric/thermal characterization and calibration of solutions and materials for biomedical applications. , 2020, , .		4
15	Upgrade to the K-band uplink channel for the ESA Deep Space Antennas: Analysis of the optics and preliminary dichroic mirror design. , 2020, , .		1
16	Combining Millimeter-Wave Imaging, Ultrasound and Elastography in a New Multimodal Approach for Breast Cancer Detection: Initial Experimental Results. , 2020, 2020, 1807-1810.		2
17	Potentialities of Inverse Scattering Techniques for Breast Cancer Imaging at Millimeter-Waves Frequencies. , 2020, , .		3
18	Identification of multi-temporal snow melting patterns with microwave radars. , 2020, , .		3

2

#	Article	IF	CITATIONS
19	Experimental validation of a dual-receiver radar architecture for snowpack monitoring. International Journal of Microwave and Wireless Technologies, 2020, 12, 439-446.	1.5	4
20	Preliminary comparison up to 50 GHz between in-vivo, in-loco, and ex-vivo measurements for the dielectric permittivity of tissues with high water content. , 2020, , .		0
21	Towards mm-wave spectroscopy for dielectric characterization of breast surgical margins. Breast, 2019, 45, 64-69.	0.9	28
22	Hydration as Classifier of Dielectric Measurement Data from 500 MHz to 50 GHz. , 2019, , .		4
23	Preliminary Analysis Of The Performance Metrics For The 26 Ghz Band Receiving Channel Of The Snowbear Project. , 2019, , .		1
24	Tissue-mimicking materials for breast phantoms up to 50 GHz. Physics in Medicine and Biology, 2019, 64, 055006.	1.6	43
25	Snowpack Monitoring Using a Dual-Receiver Radar Architecture. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 1195-1204.	2.7	12
26	Time–Space Optimization of Uniform Array Lattices for Space Debris Radars. IEEE Transactions on Antennas and Propagation, 2018, 66, 2673-2677.	3.1	2
27	Double-Sided SIW Leaky-Wave Antenna With Increased Directivity in the <inline-formula> <tex-math notation="LaTeX">\$E\$ </tex-math> </inline-formula> -Plane. IEEE Transactions on Antennas and Propagation, 2018, 66, 3130-3135.	3.1	17
28	Wideband Cryogenic Receiver for Very Long Baseline Interferometry Applications. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 275-278.	2.4	0
29	Snow Cover Monitoring Using Microwave Radars: Dielectric Characterization, Fabrication, and Testing of a Synthetic Snowpack. , 2018, , .		3
30	Preliminary Assessment of Factors Affecting Accuracy of Snow Layer Thickness Estimation Using BI-Static, Up-Looking Radars in an Avalanche Risk Assessment Context. , 2018, , .		1
31	On the Conservation of Materials for Breast Phantoms in the Frequency Range 0.5-50 GHz. , 2018, , .		3
32	Preliminary Experimental Characterization of Gelatin-Based Tissue-Mimicking Materials for Realistic Breast Phantoms aimed at Microwave Applications. , 2018, , .		1
33	3-D Printed Antenna for Snowpack Monitoring. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 2109-2113.	2.4	9
34	Optimization of a Multi-Receiver FMCW Radar for Snow Cover Monitoring. , 2018, , .		4
35	Dielectric properties of breast tissues: experimental results up to 50 GHz. , 2018, , .		31
36	Correlation Between Dielectric Properties and Women Age for Breast Cancer Detection at 30 GHz. , 2018, , .		6

#	Article	IF	CITATIONS
37	Realization of breast tissue-mimicking phantom materials: dielectric characterization in the 0.5-50 GHz frequency range. , 2018, , .		6
38	The SNOWBEAR project, a Svalbard ground station for wide-band earth observation data reception. , 2018, , .		1
39	Compact 3D-printed Variable-infill Antenna for Snow Cover Monitoring. , 2018, , .		4
40	Substrate-Integrated-Waveguide E-Plane 3-dB Power-Divider/Combiner Based on Resistive Layers. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 1498-1510.	2.9	25
41	Electromagnetic analysis of high frequency radomes for ground stations in polar regions. , 2017, , .		1
42	Enhancing breast cancer imaging at millimeter waves using focusing techniques. , 2017, , .		1
43	Study on the compromise between resolution and attenuation for breast imaging systems. , 2017, , .		1
44	Leaky-wave antenna in planar technology with high directivity in the transverse plane. , 2017, , .		3
45	On the Feasibility of Breast Cancer Imaging Systems at Millimeter-Waves Frequencies. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 1795-1806.	2.9	84
46	Dielectric Properties Characterization From 0.5 to 50 GHz of Breast Cancer Tissues. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 998-1011.	2.9	172
47	High-Frequency Radomes for Polar Region Ground Stations: The State of the Art and Novel Developments of Radome Technologies. IEEE Antennas and Propagation Magazine, 2017, 59, 88-101.	1.2	11
48	Exposure limits and dielectric contrast for breast cancer tissues: Experimental results up to 50 GHz. , 2017, , .		5
49	High-resolution mm-wave imaging techniques and systems for breast cancer detection. , 2017, , .		14
50	RF analysis at K band of a radome-covered ground station at polar latitudes. , 2017, , .		0
51	Experimental validation of the dielectric permittivity of breast cancer tissues up to 50 GHz. , 2017, , .		9
52	Additive manufacturing of a chalk powder NRD 3-port junction via binder jetting technology. , 2017, , .		0
53	Dielectric characterization of material for 3D-printed breast phantoms up to 50 GHz: Preliminary experimental results. , 2017, , .		3
54	3D-printed Chalk powder for microwave devices: Experimental results for a NRD-guide in Ku-band. , 2017, , .		4

#	Article	IF	CITATIONS
55	RF analysis at K band of a radome-covered ground station at polar latitudes. , 2017, , .		Ο
56	Effects of finite aperture and random phase errors for a space debris radar antenna array. , 2017, , .		1
57	MM-Waves Modulated Gaussian Pulse Radar Breast Cancer Imaging Approach Based on Artificial Neural Network: Preliminary Assessment Study. , 2017, , .		1
58	Effects of finite aperture and random phase errors for a space debris radar antenna array. , 2017, , .		0
59	Electromagnetic analysis and optimization of a cryogenic receiver for VLBI applications. , 2016, , .		3
60	Novel materials and fabrication technologies for SIW components for the Internet of Things. , 2016, , .		4
61	A multi-array antenna system with optimal lattice for rectangular pyramidal scanning of space debris. , 2016, , .		3
62	Modeling of waveguide components by the BI-RME method with the Ewald Green's function and the segmentation technique. , 2016, , .		6
63	Modeling of inhomogeneous and lossy components by the BI-RME method and the segmentation technique. , 2016, , .		2
64	Breast cancer imaging at mm-waves: Feasibility study on the safety exposure limits. , 2016, , .		4
65	SIW components for the Internet of Things: Novel topologies, materials, and manufacturing techniques. , 2016, , .		12
66	Application of the BI-RME method to the analysis of piecewise-homogeneous waveguide components. , 2016, , .		0
67	Innovative manufacturing approach for paperâ€based substrate integrated waveguide components and antennas. IET Microwaves, Antennas and Propagation, 2016, 10, 256-263.	0.7	20
68	Infill-Dependent 3-D-Printed Material Based on NinjaFlex Filament for Antenna Applications. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1506-1509.	2.4	115
69	Innovative SIW components on paper, textile, and 3D-printed substrates for the Internet of Things. , 2015, , .		8
70	Design formulas for radiation and crosstalk in substrate integrated waveguides. , 2015, , .		0
71	RF characterization of 3D printed flexible materials - NinjaFlex Filaments. , 2015, , .		30

72 Exploiting 3D printed substrate for microfluidic SIW sensor. , 2015, , .

16

#	Article	IF	CITATIONS
73	Compact substrate integrated waveguide (SIW) components on paper substrate. , 2015, , .		8
74	E-plane 3-dB power divider/combiner in substrate integrated waveguide technology. , 2015, , .		2
75	Crosstalk in Substrate Integrated Waveguides. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 80-86.	1.4	22
76	The Sardinia Radio Telescope Upgrade to Telemetry, Tracking and Command: Beam Squint and Electromagnetic Compatibility Design. IEEE Antennas and Propagation Magazine, 2015, 57, 177-191.	1.2	3
77	0.5–50ÂGHz dielectric characterisation of breast cancer tissues. Electronics Letters, 2015, 51, 974-975.	0.5	34
78	Two-Material Ridge Substrate Integrated Waveguide for Ultra-Wideband Applications. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 3175-3182.	2.9	18
79	Additive manufacturing of 3D substrate integrated waveguide components. Electronics Letters, 2015, 51, 1426-1428.	0.5	44
80	Crosstalk in Substrate Integrated Waveguides: A semi-analytical approach based on side leakage. , 2014, , ,		0
81	Modeling of losses in substrate integrated waveguide components. , 2014, , .		22
82	Perturbation modeling of high-loss waveguide components by the BI-RME method. , 2014, , .		0
83	Cryogenic dualâ€ŧemperature low noise amplifier in <i>K</i> band. IET Microwaves, Antennas and Propagation, 2014, 8, 642-648.	0.7	3
84	Innovative technique for substrate integrated waveguide implementation on paper substrate. , 2014, , .		3
85	MoM/BI-RME method for the modeling of frequency selective surfaces and printed circuits. , 2014, , .		1
86	Analysis of lossy waveguide circuits by the BI-RME method and a perturbation technique. , 2014, , .		0
87	Advanced modeling and design of substrate integrated waveguide components. , 2014, , .		5
88	A Formula for Radiation Loss in Substrate Integrated Waveguide. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 2205-2213.	2.9	28
89	Accurate Modeling of Dichroic Mirrors in Beam-Waveguide Antennas. IEEE Transactions on Antennas and Propagation, 2013, 61, 1931-1938.	3.1	22
90	Multiphysics design and experimental verification of a quadâ€band dichroic mirror for deep space ground stations. IET Microwaves, Antennas and Propagation, 2013, 7, 391-398.	0.7	7

#	Article	IF	CITATIONS
91	Radiation losses in Substrate Integrated Waveguides: A semi-analytical approach for a quantitative determination. , 2013, , .		11
92	Modeling of periodic and quasi-periodic structures by the MoM/BI-RME method. , 2013, , .		1
93	A mm-Wave 2D Ultra-Wideband Imaging Radar for Breast Cancer Detection. International Journal of Antennas and Propagation, 2013, 2013, 1-8.	0.7	16
94	Efficiency of arrays composed of high-gain reflector antennas. IET Microwaves, Antennas and Propagation, 2012, 6, 1636-1642.	0.7	4
95	Physical-based broadband modeling of printed periodic structures by the MoM/BI-RME method. , 2012, , .		0
96	Synthesis and analysis of the Sardinia Radio Telescope BWG system for TT&C capabilities using a Gaussian Beam approach. , 2012, , .		2
97	Future Architectures for European Space Agency Deep-Space Ground Stations [Antenna Applications Corner]. IEEE Antennas and Propagation Magazine, 2012, 54, 254-263.	1.2	21
98	Low-cost dichroic mirrors for future Deep Space ground stations. International Journal of Microwave and Wireless Technologies, 2011, 3, 595-600.	1.5	1
99	Multi-physics design and manufacturing of a quad-band frequency selective surface for space applications. , 2011, , .		Ο
100	Fixed ground stations for multi-satellite geostationary missions. International Journal of Microwave and Wireless Technologies, 2011, 3, 601-607.	1.5	2
101	Frequency Selective Surfaces for Extended Bandwidth Backing Reflector Functions. IEEE Transactions on Antennas and Propagation, 2010, 58, 43-50.	3.1	52
102	On the losses in substrate-integrated waveguides and cavities. International Journal of Microwave and Wireless Technologies, 2009, 1, 395-401.	1.5	57
103	Frequency Selective Surfaces for Extended Bandwidth Backing Reflector Functions. , 2008, , .		2
104	Feasibility study of the upgrade to K band of ESA Deep Space Antennas. , 2008, , .		1
105	Preliminary beam-waveguide design of the novel ESA deep-space antenna DSA3. , 2007, , .		Ο
106	Design of K-band inductive dichroic mirrors for upgrading ESA deep-space antenna DSA2. , 2007, , .		3
107	Design of a large bandwidth planar antenna using inductive frequency selective surfaces. , 2007, , .		3

108 On the losses in substrate integrated waveguides. , 2007, , .

#	Article	IF	CITATIONS
109	Accurate Modeling of the Interaction between Feeds and Dichroic Mirrors. , 2006, , .		1
110	Accurate modeling of frequency selective surfaces illuminated by a non-uniform incident field. , 2006, , .		0
111	A Novel Approach for the Design of Dichroic Mirrors for Deep Space Antennas. , 0, , .		4