List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8871001/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alternative functions of CRISPR–Cas systems in the evolutionary arms race. Nature Reviews Microbiology, 2022, 20, 351-364.	13.6	44
2	Active Human and Porcine Serum Induce Competence for Genetic Transformation in the Emerging Zoonotic Pathogen Streptococcus suis. Pathogens, 2021, 10, 156.	1.2	5
3	Selection of antimicrobial frog peptides and temporinâ€1 DR a analogues for treatment of bacterial infections based on their cytotoxicity and differential activity against pathogens. Chemical Biology and Drug Design, 2020, 96, 1103-1113.	1.5	7
4	Campylobacter jejuni Cas9 Modulates the Transcriptome in Caco-2 Intestinal Epithelial Cells. Genes, 2020, 11, 1193.	1.0	12
5	Guide-free Cas9 from pathogenic <i>Campylobacter jejuni</i> bacteria causes severe damage to DNA. Science Advances, 2020, 6, eaaz4849.	4.7	31
6	Tackling the chemical diversity of microbial nonulosonic acids – a universal large-scale survey approach. Chemical Science, 2020, 11, 3074-3080.	3.7	21
7	Visualisation of dCas9 target search in vivo using an open-microscopy framework. Nature Communications, 2019, 10, 3552.	5.8	70
8	Biomarker Research in ADHD: the Impact of Nutrition (BRAIN) - study protocol of an open-label trial to investigate the mechanisms underlying the effects of a few-foods diet on ADHD symptoms in children. BMJ Open, 2019, 9, e029422.	0.8	8
9	Draft Genome Sequence of Streptococcus suis S10, a Virulent Strain Used in Experimental Pig Infections. Microbiology Resource Announcements, 2019, 8, .	0.3	1
10	Sialyllactose and Galactooligosaccharides Promote Epithelial Barrier Functioning and Distinctly Modulate Microbiota Composition and Short Chain Fatty Acid Production In Vitro. Frontiers in Immunology, 2019, 10, 94.	2.2	80
11	KREAP: an automated Galaxy platform to quantify in vitro re-epithelialization kinetics. GigaScience, 2018, 7, .	3.3	3
12	Use of Microarray Datasets to generate Caco-2-dedicated Networks and to identify Reporter Genes of Specific Pathway Activity. Scientific Reports, 2017, 7, 6778.	1.6	7
13	Temporal Regulation of the Transformasome and Competence Development in Streptococcus suis. Frontiers in Microbiology, 2016, 7, 1922.	1.5	18
14	Metabolic Context of the Competence-Induced Checkpoint for Cell Replication in Streptococcus suis. PLoS ONE, 2016, 11, e0153571.	1.1	17
15	Identification of Commensal Species Positively Correlated with Early Stress Responses to a Compromised Mucus Barrier. Inflammatory Bowel Diseases, 2016, 22, 826-840.	0.9	30
16	A Zebrafish Larval Model to Assess Virulence of Porcine Streptococcus suis Strains. PLoS ONE, 2016, 11, e0151623.	1.1	30
17	Live <i>Faecalibacterium prausnitzii</i> in an apical anaerobic model of the intestinal epithelial barrier. Cellular Microbiology, 2015, 17, 226-240.	1.1	73
18	IL-22-STAT3 Pathway Plays a Key Role in the Maintenance of Ileal Homeostasis in Mice Lacking Secreted Mucus Barrier. Inflammatory Bowel Diseases, 2015, 21, 531-542.	0.9	46

#	Article	IF	CITATIONS
19	Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural <i>Campylobacter coli</i> and <i>Campylobacter jejuni</i> lsolates Correlates with Lack of Shared Environments. Genome Biology and Evolution, 2015, 7, 2663-2679.	1.1	30
20	Bacterial Histidine Kinases as Novel Antibacterial Drug Targets. ACS Chemical Biology, 2015, 10, 213-224.	1.6	174
21	Control of Competence for DNA Transformation in Streptococcus suis by Genetically Transferable Pherotypes. PLoS ONE, 2014, 9, e99394.	1.1	58
22	The Role of CRISPR-Cas Systems in Virulence of Pathogenic Bacteria. Microbiology and Molecular Biology Reviews, 2014, 78, 74-88.	2.9	228
23	REG3Î ³ -deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum. Mucosal Immunology, 2014, 7, 939-947.	2.7	151
24	Transient inflammatory-like state and microbial dysbiosis are pivotal in establishment of mucosal homeostasis during colonisation of germ-free mice. Beneficial Microbes, 2014, 5, 67-77.	1.0	64
25	Carbohydrate Availability Regulates Virulence Gene Expression in Streptococcus suis. PLoS ONE, 2014, 9, e89334.	1.1	48
26	The gut microbiota elicits a profound metabolic reorientation in the mouse jejunal mucosa during conventionalisation. Gut, 2013, 62, 1306-1314.	6.1	118
27	Omics approaches to study host–microbiota interactions. Current Opinion in Microbiology, 2013, 16, 270-277.	2.3	22
28	Gut bacteria–host metabolic interplay during conventionalisation of the mouse germfree colon. ISME Journal, 2013, 7, 743-755.	4.4	84
29	Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends in Immunology, 2013, 34, 208-215.	2.9	294
30	WalK, the Path towards New Antibacterials with Low Potential for Resistance Development. ACS Medicinal Chemistry Letters, 2013, 4, 891-894.	1.3	15
31	Vectorial secretion of interleukin-8 mediates autocrine signalling in intestinal epithelial cells via apically located CXCR1. BMC Research Notes, 2013, 6, 431.	0.6	30
32	A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain–Barré syndrome. European Journal of Clinical Microbiology and Infectious Diseases, 2013, 32, 207-226.	1.3	159
33	Are bacteriophage defence and virulence two sides of the same coin in <i>Campylobacter jejuni</i> ?. Biochemical Society Transactions, 2013, 41, 1475-1481.	1.6	6
34	Gene Expression Analysis of Peripheral Cells for Subclassification of Pediatric Inflammatory Bowel Disease in Remission. PLoS ONE, 2013, 8, e79549.	1.1	12
35	Campylobacter jejuni Translocation across Intestinal Epithelial Cells Is Facilitated by Ganglioside-Like Lipooligosaccharide Structures. Infection and Immunity, 2012, 80, 3307-3318.	1.0	39
36	Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunology, 2012, 5, 567-579.	2.7	201

#	Article	IF	CITATIONS
37	Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nature Reviews Microbiology, 2012, 10, 66-78.	13.6	557
38	Host-Recognition of Pathogens and Commensals in the Mammalian Intestine. Current Topics in Microbiology and Immunology, 2011, 358, 291-321.	0.7	35
39	Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4562-4569.	3.3	289
40	Epithelial crosstalk at the microbiota–mucosal interface. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4607-4614.	3.3	492
41	Modulation of Mucosal Immune Response, Tolerance, and Proliferation in Mice Colonized by the Mucin-Degrader Akkermansia muciniphila. Frontiers in Microbiology, 2011, 2, 166.	1.5	438
42	Differential NF-κB pathways induction by <i>Lactobacillus plantarum</i> in the duodenum of healthy humans correlating with immune tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2371-2376.	3.3	363
43	Evolutionary relationships between Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici isolates inferred from mating type, elongation factor-11± and exopolygalacturonase sequences. Mycological Research, 2009, 113, 1181-1191.	2.5	38
44	Genomics of plantâ€associated microbes. Microbial Biotechnology, 2009, 2, 406-411.	2.0	1
45	Phytotoxic Nep1â€like proteins from the necrotrophic fungus <i>Botrytis cinerea</i> associate with membranes and the nucleus of plant cells. New Phytologist, 2008, 177, 493-505.	3.5	136
46	Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFS1 in vivo. BMC Genomics, 2008, 9, 374.	1.2	69
47	Challenges in plant cellular pathway reconstruction based on gene expression profiling. Trends in Plant Science, 2008, 13, 44-50.	4.3	20
48	The <i>Cladosporium fulvum</i> Virulence Protein Avr2 Inhibits Host Proteases Required for Basal Defense Â. Plant Cell, 2008, 20, 1948-1963.	3.1	230
49	Positive selection in phytotoxic protein-encoding genes of Botrytis species. Fungal Genetics and Biology, 2007, 44, 52-63.	0.9	104
50	Plant Defence Compounds Against Botrytis Infection. , 2007, , 143-161.		31
51	Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Molecular Plant Pathology, 2007, 8, 41-54.	2.0	164
52	Functional analysis of NLP genes from Botrytis elliptica. Molecular Plant Pathology, 2007, 8, 209-214.	2.0	53
53	Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps?. FEMS Microbiology Reviews, 2007, 31, 239-277.	3.9	149
54	Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects. Drug Discovery Today, 2007, 12, 167-173.	3.2	20

#	Article	IF	CITATIONS
55	AFLP analysis of genetic diversity in populations of Botrytis elliptica and Botrytis tulipae from the Netherlands. European Journal of Plant Pathology, 2007, 117, 219-235.	0.8	14
56	Molecular Phylogeny of the Plant Pathogenic Genus Botrytis and the Evolution of Host Specificity. Molecular Biology and Evolution, 2004, 22, 333-346.	3.5	345
57	Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica. Molecular Plant Pathology, 2004, 5, 559-574.	2.0	100
58	The occurrence of phenotypically complementary apomixis-recombinants in crosses between sexual and apomictic dandelions (Taraxacum officinale). Sexual Plant Reproduction, 2003, 16, 71-76.	2.2	34
59	Comparative cyto-embryological investigations of sexual and apomictic dandelions (Taraxacum) and their apomictic hybrids. Sexual Plant Reproduction, 2002, 15, 31-38.	2.2	33
60	Meiotic recombination in sexual diploid and apomictic triploid dandelions (Taraxacum officinale L.). Genome, 2000, 43, 827-835.	0.9	66
61	Meiotic recombination in sexual diploid and apomictic triploid dandelions (<i>Taraxacum) Tj ETQq1 1 0.784314 r</i>	gBT /Over 0.9	lo <u>ç</u> k 10 Tf 50
62	What can we learn from natural apomicts?. Trends in Plant Science, 1999, 4, 43-44.	4.3	22
63	Change in foraging behaviour of the predatory mite Phytoseiulus persimilis after exposure to dead conspecifics and their products. Entomologia Experimentalis Et Applicata, 1998, 88, 295-300.	0.7	27
64	Pathology and control of soil-borne fungal pathogens of potato. Potato Research, 1996, 39, 437-469.	1.2	77
65	Host location by <i>Gelis festinans</i> , an eggsac parasitoid of the linyphiid spider <i>Erigone atra</i> . Entomologia Experimentalis Et Applicata, 1996, 81, 155-163.	0.7	23
66	Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: Extraction of endogenous elicitor. Journal of Chemical Ecology, 1993, 19, 581-599.	0.9	132