Maria Letizia Barreca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8870982/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of 2-Phenylquinolines with Broad-Spectrum Anti-coronavirus Activity. ACS Medicinal Chemistry Letters, 2022, 13, 855-864.	2.8	10
2	Sustainable, three-component, one-pot procedure to obtain active anti-flavivirus agents. European Journal of Medicinal Chemistry, 2021, 210, 112992.	5.5	6
3	Pharmacological inactivation of the prion protein by targeting a folding intermediate. Communications Biology, 2021, 4, 62.	4.4	30
4	From Quinoline to Quinazolineâ€Based S. aureus NorA Efflux Pump Inhibitors by Coupling a Focused Scaffold Hopping Approach and a Pharmacophore Search. ChemMedChem, 2021, 16, 3044-3059.	3.2	9
5	1,2,4-Triazolo[1,5-a]pyrimidines: Efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors. European Journal of Medicinal Chemistry, 2021, 221, 113494.	5.5	15
6	Identification of compounds inhibiting prion replication and toxicity by removing PrP ^C from the cell surface. Journal of Neurochemistry, 2020, 152, 136-150.	3.9	11
7	Structural Modifications of the Quinolin-4-yloxy Core to Obtain New Staphylococcus aureus NorA Inhibitors. International Journal of Molecular Sciences, 2020, 21, 7037.	4.1	8
8	The Compelling Demand for an Effective PrP ^C -Directed Therapy against Prion Diseases. ACS Medicinal Chemistry Letters, 2020, 11, 2063-2067.	2.8	10
9	Antitubercular polyhalogenated phenothiazines and phenoselenazine with reduced binding to CNS receptors. European Journal of Medicinal Chemistry, 2020, 201, 112420.	5.5	12
10	Pyridobenzothiazolones Exert Potent Anti-Dengue Activity by Hampering Multiple Functions of NS5 Polymerase. ACS Medicinal Chemistry Letters, 2020, 11, 773-782.	2.8	28
11	C-2 phenyl replacements to obtain potent quinoline-based <i>Staphylococcus aureus</i> NorA inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 584-597.	5.2	13
12	New Insights on KCa3.1 Channel Modulation. Current Pharmaceutical Design, 2020, 26, 2096-2101.	1.9	4
13	Deciphering the Molecular Recognition Mechanism of Multidrug Resistance Staphylococcus aureus NorA Efflux Pump Using a Supervised Molecular Dynamics Approach. International Journal of Molecular Sciences, 2019, 20, 4041.	4.1	18
14	Discovery of potent p38α MAPK inhibitors through a funnel like workflow combining in silico screening and inÂvitro validation. European Journal of Medicinal Chemistry, 2019, 182, 111624.	5.5	17
15	Modifications on C6 and C7 Positions of 3-Phenylquinolone Efflux Pump Inhibitors Led to Potent and Safe Antimycobacterial Treatment Adjuvants. ACS Infectious Diseases, 2019, 5, 982-1000.	3.8	10
16	Broad spectrum anti-flavivirus pyridobenzothiazolones leading to less infective virions. Antiviral Research, 2019, 167, 6-12.	4.1	24
17	Co-crystal structure determination and cellular evaluation of 1,4-dihydropyrazolo[4,3-c] [1,2] benzothiazine 5,5-dioxide p38î± MAPK inhibitors. Biochemical and Biophysical Research Communications, 2019, 511, 579-586.	2.1	6
18	A Comprehensive Structural Overview of p38α Mitogenâ€Activated Protein Kinase in Complex with ATPâ€5ite and Nonâ€ATPâ€5ite Binders, ChemMedChem, 2018, 13, 7-14,	3.2	20

#	Article	IF	CITATIONS
19	Functionalized 2,1-benzothiazine 2,2-dioxides as new inhibitors of Dengue NS5 RNA-dependent RNA polymerase. European Journal of Medicinal Chemistry, 2018, 143, 1667-1676.	5.5	24
20	2-Phenylquinoline <i>S. aureus</i> NorA Efflux Pump Inhibitors: Evaluation of the Importance of Methoxy Group Introduction. Journal of Medicinal Chemistry, 2018, 61, 7827-7848.	6.4	46
21	Pharmacological Agents Targeting the Cellular Prion Protein. Pathogens, 2018, 7, 27.	2.8	40
22	Studies on 2-phenylquinoline Staphylococcus aureus NorA efflux pump inhibitors: New insights on the C-6 position. European Journal of Medicinal Chemistry, 2018, 155, 428-433.	5.5	19
23	Pharmacophore-Based Repositioning of Approved Drugs as Novel <i>Staphylococcus aureus</i> NorA Efflux Pump Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 1598-1604.	6.4	59
24	Searching for Novel Inhibitors of the <i>S.â€aureus</i> NorA Efflux Pump: Synthesis and Biological Evaluation of the 3â€Phenylâ€1,4â€benzothiazine Analogues. ChemMedChem, 2017, 12, 1293-1302.	3.2	28
25	Exploring the cycloheptathiophene-3-carboxamide scaffold to disrupt the interactions of the influenza polymerase subunits and obtain potent anti-influenza activity. European Journal of Medicinal Chemistry, 2017, 138, 128-139.	5.5	38
26	Structure–Activity Relationships on Cinnamoyl Derivatives as Inhibitors of p300 Histone Acetyltransferase. ChemMedChem, 2017, 12, 1359-1368.	3.2	11
27	Natural isoflavone biochanin A as a template for the design of new and potent 3-phenylquinolone efflux inhibitors against Mycobacterium avium. European Journal of Medicinal Chemistry, 2017, 140, 321-330.	5.5	28
28	A Smallâ€Molecule Inhibitor of Prion Replication and Mutant Prion Protein Toxicity. ChemMedChem, 2017, 12, 1286-1292.	3.2	5
29	Targeting flavivirus RNA dependent RNA polymerase through a pyridobenzothiazole inhibitor. Antiviral Research, 2016, 134, 226-235.	4.1	49
30	Bicyclic octahydrocyclohepta[b]pyrrol-4(1 H)one derivatives as novel selective anti-hepatitis C virus agents. European Journal of Medicinal Chemistry, 2016, 122, 319-325.	5.5	6
31	Maria Letizia Barreca on hepatitis C virus treatment and control. Future Medicinal Chemistry, 2016, 8, 7-9.	2.3	0
32	A Journey around the Medicinal Chemistry of Hepatitis C Virus Inhibitors Targeting NS4B: From Target to Preclinical Drug Candidates. Journal of Medicinal Chemistry, 2016, 59, 16-41.	6.4	56
33	Tumour cell population growth inhibition and cell death induction of functionalized 6â€aminoquinolone derivatives. Cell Proliferation, 2015, 48, 705-717.	5.3	6
34	p38α MAPK and Type I Inhibitors: Binding Site Analysis and Use of Target Ensembles in Virtual Screening. Molecules, 2015, 20, 15842-15861.	3.8	14
35	The Pyrazolobenzothiazine Core as a New Chemotype of p38 Alpha Mitogenâ€Activated Protein Kinase Inhibitors. Chemical Biology and Drug Design, 2015, 86, 531-545.	3.2	14
36	Discovery of the 2-phenyl-4,5,6,7-Tetrahydro-1H-indole as a novel anti-hepatitis C virus targeting scaffold. European Journal of Medicinal Chemistry, 2015, 96, 250-258.	5.5	24

#	Article	IF	CITATIONS
37	A Comprehensive Structural Overview of p38α MAPK in Complex with Typeâ€I Inhibitors. ChemMedChem, 2015, 10, 957-969.	3.2	17
38	Decoding the function of the N-terminal tail of the cellular prion protein to inspire novel therapeutic avenues for neurodegenerative diseases. Virus Research, 2015, 207, 62-68.	2.2	9
39	Accounting for Target Flexibility and Water Molecules by Docking to Ensembles of Target Structures: The HCV NS5B Palm Site I Inhibitors Case Study. Journal of Chemical Information and Modeling, 2014, 54, 481-497.	5.4	16
40	New Pyrazolobenzothiazine Derivatives as Hepatitis C Virus NS5B Polymerase Palm Site I Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 3247-3262.	6.4	35
41	The Versatile Nature of the 6-Aminoquinolone Scaffold: Identification of Submicromolar Hepatitis C Virus NS5B Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 1952-1963.	6.4	43
42	Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands. Bioorganic and Medicinal Chemistry, 2014, 22, 4658-4666.	3.0	19
43	1,4-Benzothiazine ATP-Sensitive Potassium Channel Openers: Modifications at the C-2 and C-6 Positions. Journal of Medicinal Chemistry, 2013, 56, 4718-4728.	6.4	20
44	Computerâ€Aided Design, Synthesis and Validation of 2â€Phenylquinazolinone Fragments as CDK9 Inhibitors with Antiâ€HIVâ€I Tatâ€Mediated Transcription Activity. ChemMedChem, 2013, 8, 1941-1953.	3.2	32
45	Structure-Based Discovery of Pyrazolobenzothiazine Derivatives As Inhibitors of Hepatitis C Virus Replication. Journal of Medicinal Chemistry, 2013, 56, 2270-2282.	6.4	40
46	Re-evolution of the 2-Phenylquinolines: Ligand-Based Design, Synthesis, and Biological Evaluation of a Potent New Class of Staphylococcus aureus NorA Efflux Pump Inhibitors to Combat Antimicrobial Resistance. Journal of Medicinal Chemistry, 2013, 56, 4975-4989.	6.4	51
47	A Highly Intensified ART Regimen Induces Long-Term Viral Suppression and Restriction of the Viral Reservoir in a Simian AIDS Model. PLoS Pathogens, 2012, 8, e1002774.	4.7	70
48	Pyridobenzothiazole derivatives as new chemotype targeting the HCV NS5B polymerase. Bioorganic and Medicinal Chemistry, 2012, 20, 866-876.	3.0	41
49	Allosteric inhibition of the hepatitis C virus NS5B polymerase: <i>in silico</i> strategies for drug discovery and development. Future Medicinal Chemistry, 2011, 3, 1027-1055.	2.3	39
50	New chloro,fluorobenzylindole derivatives as integrase strand-transfer inhibitors (INSTIs) and their mode of action. Bioorganic and Medicinal Chemistry, 2010, 18, 5510-5518.	3.0	15
51	Small molecules targeting the interaction between HIV-1 integrase and LEDGF/p75 cofactor. Bioorganic and Medicinal Chemistry, 2010, 18, 7515-7521.	3.0	59
52	Response of a simian immunodeficiency virus (SIVmac251) to raltegravir: a basis for a new treatment for simian AIDS and an animal model for studying lentiviral persistence during antiretroviral therapy. Retrovirology, 2010, 7, 21.	2.0	36
53	A 1,8-Naphthyridone Derivative Targets the HIV-1 Tat-Mediated Transcription and Potently Inhibits the HIV-1 Replication. Journal of Medicinal Chemistry, 2010, 53, 641-648.	6.4	122
54	Pharmacophoreâ€Based Discovery of Smallâ€Molecule Inhibitors of Protein–Protein Interactions between HIVâ€1 Integrase and Cellular Cofactor LEDGF/p75. ChemMedChem, 2009, 4, 1311-1316.	3.2	98

#	Article	IF	CITATIONS
55	Inducedâ€Fit Docking Approach Provides Insight into the Binding Mode and Mechanism of Action of HIVâ€1 Integrase Inhibitors. ChemMedChem, 2009, 4, 1446-1456.	3.2	54
56	Synthesis of new pyridazine derivatives as potential antiâ€HIVâ€1 agents. Journal of Heterocyclic Chemistry, 2009, 46, 1420-1424.	2.6	9
57	Docking Studies on a New Human Immodeficiency Virus Integraseâ^'Mgâ^'DNA Complex: Phenyl Ring Exploration and Synthesis of 1H-Benzylindole Derivatives through Fluorine Substitutions. Journal of Medicinal Chemistry, 2009, 52, 569-573.	6.4	40
58	Structural Modification of Diketo Acid Portion in 1H-Benzylindole Derivatives HIV-1 Integrase Inhibitors. Heterocycles, 2009, 78, 947.	0.7	7
59	Novel N1-substituted 1,3-dihydro-2H-benzimidazol-2-ones as potent non-nucleoside reverse transcriptase inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 7429-7435.	3.0	43
60	A refined pharmacophore model for HIV-1 integrase inhibitors: Optimization of potency in the 1H-benzylindole series. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2891-2895.	2.2	38
61	Design, Synthesis, and Biological Evaluation of a Series of 2-Hydroxyisoquinoline-1,3(2 <i>H</i> ,4 <i>H</i>)-diones as Dual Inhibitors of Human Immunodeficiency Virus Type 1 Integrase and the Reverse Transcriptase RNase H Domain. Journal of Medicinal Chemistry, 2008, 51, 7717-7730.	6.4	115
62	Response of Feline Immunodeficiency Virus (FIV) to Tipranavir May Provide New Clues for Development of Broad-Based Inhibitors of Retroviral Proteases Acting on Drug-Resistant HIV-1. Current HIV Research, 2008, 6, 306-317.	0.5	12
63	Preclinical Evaluation of 1H-Benzylindole Derivatives as Novel Human Immunodeficiency Virus Integrase Strand Transfer Inhibitors. Antimicrobial Agents and Chemotherapy, 2008, 52, 2861-2869.	3.2	17
64	Tn5 transposase as a useful platform to simulate HIV-1 integrase inhibitor binding mode. Biochemical and Biophysical Research Communications, 2007, 363, 554-560.	2.1	15
65	Structure-Based Pharmacophore Identification of New Chemical Scaffolds as Non-Nucleoside Reverse Transcriptase Inhibitors. Journal of Chemical Information and Modeling, 2007, 47, 557-562.	5.4	56
66	Human immunodeficiency virus integrase inhibitors efficiently suppress feline immunodeficiency virus replication in vitro and provide a rationale to redesign antiretroviral treatment for feline AIDS. Retrovirology, 2007, 4, 79.	2.0	37
67	New 4-[(1-Benzyl-1H-indol-3-yl)carbonyl]-3-hydroxyfuran-2(5H)-ones, β-Diketo Acid Analogs as HIV-1 Integrase Inhibitors. Archiv Der Pharmazie, 2007, 340, 292-298.	4.1	27
68	Synthesis, resolution, stereochemistry, and molecular modeling of (R)- and (S)-2-acetyl-1-(4′-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline AMPAR antagonists. Bioorganic and Medicinal Chemistry, 2007, 15, 5417-5423.	3.0	27
69	Discovery of novel benzimidazolones as potent non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1956-1960.	2.2	70
70	Binding Mode Prediction of Strand Transfer HIV-1 Integrase Inhibitors Using Tn5 Transposase as a Plausible Surrogate Model for HIV-1 Integrase. Journal of Medicinal Chemistry, 2006, 49, 3994-3997.	6.4	35
71	3D Pharmacophore Models for 1,2,3,4-Tetrahydroisoquinoline Derivatives Acting as Anticonvulsant Agents. Archiv Der Pharmazie, 2006, 339, 388-400.	4.1	18
72	5-Arylidene-2-imino-4-thiazolidinones: Design and synthesis of novel anti-inflammatory agents. Bioorganic and Medicinal Chemistry, 2005, 13, 4243-4252.	3.0	246

MARIA LETIZIA BARRECA

#	Article	IF	CITATIONS
73	AMPA Receptor Antagonists as Potential Anticonvulsant Drugs. Current Topics in Medicinal Chemistry, 2005, 5, 31-42.	2.1	70
74	Pharmacophore-Based Design of HIV-1 Integrase Strand-Transfer Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 7084-7088.	6.4	160
75	Molecular dynamics studies of the full-length integrase–DNA complex. Biochemical and Biophysical Research Communications, 2005, 336, 1010-1016.	2.1	36
76	Computational Strategies in Discovering Novel Non-nucleoside Inhibitors of HIV-1 RT. Journal of Medicinal Chemistry, 2005, 48, 3433-3437.	6.4	58
77	Synthesis and anticonvulsant properties of tetrahydroisoquinoline derivatives. Il Farmaco, 2004, 59, 7-12.	0.9	25
78	QSAR Study of Anticonvulsant Negative Allosteric Modulators of the AMPA Receptor. Journal of Medicinal Chemistry, 2004, 47, 1860-1863.	6.4	19
79	Synthesis and Anticonvulsant Properties of Tetrahydroisoquinoline Derivatives ChemInform, 2004, 35, no.	0.0	0
80	Efficient 3D Database Screening for Novel HIV-1 IN Inhibitors ChemInform, 2004, 35, no.	0.0	0
81	New trends in the development of AMPA receptor antagonists. Expert Opinion on Therapeutic Patents, 2004, 14, 1199-1213.	5.0	11
82	Efficient 3D Database Screening for Novel HIV-1 IN Inhibitors. Journal of Chemical Information and Computer Sciences, 2004, 44, 1450-1455.	2.8	44
83	Synthesis of New Potential HIV-1 Integrase Inhibitors. Heterocycles, 2004, 63, 2727.	0.7	19
84	Discovery of a Novel and Highly Potent Noncompetitive AMPA Receptor Antagonist. Journal of Medicinal Chemistry, 2003, 46, 197-200.	6.4	80
85	Pharmacophore Modeling as an Efficient Tool in the Discovery of Novel Noncompetitive AMPA Receptor Antagonists. Journal of Chemical Information and Computer Sciences, 2003, 43, 651-655.	2.8	39
86	Binding modes of noncompetitive AMPA antagonists: a computational approach. Il Farmaco, 2003, 58, 107-113.	0.9	12
87	Anti-HIV agents: design and discovery of new potent RT inhibitors. Il Farmaco, 2003, 58, 259-263.	0.9	55
88	Pharmacophore Modeling as an Efficient Tool in the Discovery of Novel Noncompetitive AMPA Receptor Antagonists ChemInform, 2003, 34, no.	0.0	0
89	anti-HIV Agents: Design and Discovery of New Potent RT Inhibitors ChemInform, 2003, 34, no.	0.0	0
90	Analysis of the full-length integrase–DNA complex by a modified approach for DNA docking. Biochemical and Biophysical Research Communications, 2003, 310, 1083-1088.	2.1	54

#	Article	IF	CITATIONS
91	Molecular Dynamics Studies of the Wild-Type and Double Mutant HIV-1 Integrase Complexed with the 5CITEP Inhibitor: Mechanism for Inhibition and Drug Resistance. Biophysical Journal, 2003, 84, 1450-1463.	0.5	78
92	Design, Synthesis, Structureâ^'Activity Relationships, and Molecular Modeling Studies of 2,3-Diaryl-1,3-thiazolidin-4-ones as Potent Anti-HIV Agents. Journal of Medicinal Chemistry, 2002, 45, 5410-5413.	6.4	151
93	Discovery of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV-1 agents. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1793-1796.	2.2	214
94	Comparative molecular field analysis (CoMFA) and docking studies of non-nucleoside HIV-1 RT inhibitors (NNIs). Bioorganic and Medicinal Chemistry, 1999, 7, 2283-2292.	3.0	65
95	Substituent effects on the enantioselective retention of anti-HIV 5-aryl-?2-1,2,4-oxadiazolines onR, R-DACH-DNB chiral stationary phase. , 1996, 8, 556-566.		31