Sheue-yann Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8870859/publications.pdf Version: 2024-02-01

SHELLE-VANN CHENC

#	Article	IF	CITATIONS
1	Regulation of cancer stem cell activity by thyroid hormone receptor Î ² . Oncogene, 2022, 41, 2315-2325.	2.6	6
2	Thyroid Hormone Receptor α Mutations Cause Heart Defects in Zebrafish. Thyroid, 2021, 31, 315-326.	2.4	6
3	Thyroid Hormone Receptor α1 Mutants Impair B Lymphocyte Development in a Mouse Model. Thyroid, 2021, 31, 994-1002.	2.4	7
4	Mitofusin-2 modulates the epithelial to mesenchymal transition in thyroid cancer progression. Scientific Reports, 2021, 11, 2054.	1.6	16
5	Targeting transcriptional regulators for treatment of anaplastic thyroid cancer. , 2021, 7, .		3
6	Thyroid Hormone Receptor α Regulates Autophagy, Mitochondrial Biogenesis, and Fatty Acid Use in Skeletal Muscle. Endocrinology, 2021, 162, .	1.4	15
7	SHMT2 expression as a diagnostic and prognostic marker for thyroid cancer. Endocrine Connections, 2021, 10, 630-636.	0.8	14
8	Reduced thyroxine production in young household contacts of tuberculosis patients increases active tuberculosis disease risk. JCI Insight, 2021, 6, .	2.3	5
9	Secreted Factors by Anaplastic Thyroid Cancer Cells Induce Tumor-Promoting M2-like Macrophage Polarization through a TIM3-Dependent Mechanism. Cancers, 2021, 13, 4821.	1.7	11
10	Death-Associated Protein Kinase 1 Inhibits Progression of Thyroid Cancer by Regulating Stem Cell Markers. Cells, 2021, 10, 2994.	1.8	4
11	The Year in Basic Thyroidology. Thyroid, 2020, 30, 8-12.	2.4	0
12	Thyroid Hormone Receptor Î ² Inhibits Self-Renewal Capacity of Breast Cancer Stem Cells. Thyroid, 2020, 30, 116-132.	2.4	20
13	Editorial: Translational Research in Thyroid Cancer. Frontiers in Endocrinology, 2020, 11, 224.	1.5	0
14	Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone. PLoS Genetics, 2020, 16, e1008770.	1.5	20
15	Generation of Novel Genetic Models to Dissect Resistance to Thyroid Hormone Receptor α in Zebrafish. Thyroid, 2020, 30, 314-328.	2.4	11
16	Steroid receptor coactivator-3 as a target for anaplastic thyroid cancer. Endocrine-Related Cancer, 2020, 27, 209-220.	1.6	11
17	Tumor Cells and Cancer-Associated Fibroblasts: A Synergistic Crosstalk to Promote Thyroid Cancer. Endocrinology and Metabolism, 2020, 35, 673-680.	1.3	20
18	Inflammation suppression prevents tumor cell proliferation in a mouse model of thyroid cancer. American Journal of Cancer Research, 2020, 10, 1857-1870.	1.4	1

#	Article	IF	CITATIONS
19	Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone. , 2020, 16, e1008770.		0
20	Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone. , 2020, 16, e1008770.		0
21	Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone. , 2020, 16, e1008770.		0
22	Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone. , 2020, 16, e1008770.		0
23	Interplay of fibroblasts with anaplastic tumor cells promotes follicular thyroid cancer progression. Scientific Reports, 2019, 9, 8028.	1.6	23
24	Genetic and Pharmacological Targeting of Transcriptional Repression in Resistance to Thyroid Hormone Alpha. Thyroid, 2019, 29, 726-734.	2.4	7
25	Thyroid Hormone Receptor Alpha Mutations Lead to Epithelial Defects in the Adult Intestine in a Mouse Model of Resistance to Thyroid Hormone. Thyroid, 2019, 29, 439-448.	2.4	20
26	Loss of Primary Cilia Results in the Development of Cancer in the Murine Thyroid Gland. Molecules and Cells, 2019, 42, 113-122.	1.0	24
27	Potentiated anti-tumor effects of BETi by MEKi in anaplastic thyroid cancer. Endocrine-Related Cancer, 2019, 26, 739-750.	1.6	16
28	Monocyte recruitment and activated inflammation are associated with thyroid carcinogenesis in a mouse model. American Journal of Cancer Research, 2019, 9, 1439-1453.	1.4	8
29	Metformin Targets Mitochondrial Glycerophosphate Dehydrogenase to Control Rate of Oxidative Phosphorylation and Growth of Thyroid Cancer <i>In Vitro</i> and <i>In Vivo</i> . Clinical Cancer Research, 2018, 24, 4030-4043.	3.2	106
30	Mechanisms Linking Obesity and Thyroid Cancer Development and Progression in Mouse Models. Hormones and Cancer, 2018, 9, 108-116.	4.9	25
31	Analysis of Thyroid Tumorigenesis in Xenograft Mouse Model. Methods in Molecular Biology, 2018, 1801, 207-223.	0.4	0
32	Metformin and JQ1 synergistically inhibit obesity-activated thyroid cancer. Endocrine-Related Cancer, 2018, 25, 865-877.	1.6	22
33	Interplay between TRα1 and Wnt signaling: A dangerous liaison. Oncotarget, 2018, 9, 31939-31940.	0.8	1
34	Synergistic effects of BET and MEK inhibitors promote regression of anaplastic thyroid tumors. Oncotarget, 2018, 9, 35408-35421.	0.8	10
35	Thyroid Hormone Nuclear Receptors and Molecular Actions. Endocrinology, 2018, , 233-257.	0.1	1
36	Stimulation of astrocyte fatty acid oxidation by thyroid hormone is protective against ischemic stroke-induced damage. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 514-527.	2.4	45

#	Article	IF	CITATIONS
37	Loss of tyrosine phosphorylation at Y406 abrogates the tumor suppressor functions of the thyroid hormone receptor β. Molecular Carcinogenesis, 2017, 56, 489-498.	1.3	6
38	Regeneration of thyroid follicles from primordial cells in a murine thyroidectomized model. Laboratory Investigation, 2017, 97, 478-489.	1.7	8
39	Thyroid Hormone Signaling Pathways: Time for a More Precise Nomenclature. Endocrinology, 2017, 158, 2052-2057.	1.4	134
40	VEGFR2 but not VEGFR3 governs integrity and remodeling of thyroid angiofollicular unit in normal state and during goitrogenesis. EMBO Molecular Medicine, 2017, 9, 750-769.	3.3	21
41	Hypothalamic-Pituitary Axis Regulates Hydrogen Sulfide Production. Cell Metabolism, 2017, 25, 1320-1333.e5.	7.2	71
42	Catch and Release of Cytokines Mediated by Tumor Phosphatidylserine Converts Transient Exposure into Long-Lived Inflammation. Molecular Cell, 2017, 66, 635-647.e7.	4.5	34
43	Thyroid Hormone Receptor Alpha is Essential to Maintain the Satellite Cell Niche During Skeletal Muscle Injury and Sarcopenia of Aging. Thyroid, 2017, 27, 1316-1322.	2.4	26
44	Bromodomain and Extraterminal Protein Inhibitor JQ1 Suppresses Thyroid Tumor Growth in a Mouse Model. Clinical Cancer Research, 2017, 23, 430-440.	3.2	42
45	NCOR1 modulates erythroid disorders caused by mutations of thyroid hormone receptor α1. Scientific Reports, 2017, 7, 18080.	1.6	6
46	Targeting MYC as a Therapeutic Intervention for Anaplastic Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2268-2280.	1.8	34
47	Epigenetic Modifications: Novel Therapeutic Approach for Thyroid Cancer. Endocrinology and Metabolism, 2017, 32, 326.	1.3	13
48	Defective erythropoiesis caused by mutations of the thyroid hormone receptor \hat{I}_{\pm} gene. PLoS Genetics, 2017, 13, e1006991.	1.5	17
49	Inhibition of STAT3 signaling blocks obesity-induced mammary hyperplasia in a mouse model. American Journal of Cancer Research, 2017, 7, 727-739.	1.4	8
50	Metformin blocks progression of obesity-activated thyroid cancer in a mouse model. Oncotarget, 2016, 7, 34832-34844.	0.8	28
51	SAHA-induced loss of tumor suppressor Pten gene promotes thyroid carcinogenesis in a mouse model. Endocrine-Related Cancer, 2016, 23, 521-533.	1.6	7
52	Inhibition of STAT3 activity delays obesity-induced thyroid carcinogenesis in a mouse model. Endocrine-Related Cancer, 2016, 23, 53-63.	1.6	34
53	Thyroid Hormone Nuclear Receptors and Molecular Actions. Endocrinology, 2016, , 1-25.	0.1	0
54	My journey to unravel complex actions of thyroid hormone: was it fate or destiny?. Endocrine-Related Cancer, 2015, 22, P1-P10.	1.6	0

#	Article	IF	CITATIONS
55	Antitumor Responses Stimulated by Dendritic Cells Are Improved by Triiodothyronine Binding to the Thyroid Hormone Receptor β. Cancer Research, 2015, 75, 1265-1274.	0.4	26
56	Thyroid Dysfunction Associated With Follicular Cell Steatosis in Obese Male Mice and Humans. Endocrinology, 2015, 156, 1181-1193.	1.4	37
57	Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling. Nature Communications, 2015, 6, 7048.	5.8	106
58	Oncogenic mutations of thyroid hormone receptor \hat{l}^2 . Oncotarget, 2015, 6, 8115-8131.	0.8	27
59	Inhibition of Tumorigenesis by the Thyroid Hormone Receptor Î ² in Xenograft Models. Thyroid, 2014, 24, 260-269.	2.4	41
60	Synergistic Signaling of KRAS and Thyroid Hormone Receptor β Mutants Promotes Undifferentiated Thyroid Cancer through MYC Up-Regulation. Neoplasia, 2014, 16, 757-769.	2.3	43
61	A histone deacetylase inhibitor improves hypothyroidism caused by a TRÂ1 mutant. Human Molecular Genetics, 2014, 23, 2651-2664.	1.4	25
62	Thyroid Hormone Receptor α Mutation Causes a Severe and Thyroxine-Resistant Skeletal Dysplasia in Female Mice. Endocrinology, 2014, 155, 3699-3712.	1.4	47
63	Src-dependent phosphorylation at Y406 on the thyroid hormone receptor Î ² confers the tumor suppressor activity. Oncotarget, 2014, 5, 10002-10016.	0.8	8
64	Activation of integrin-ERBB2 signaling in undifferentiated thyroid cancer. American Journal of Cancer Research, 2014, 4, 776-88.	1.4	4
65	Thyroid hormone receptors and cancer. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3928-3936.	1.1	87
66	Diet-Induced Obesity Increases Tumor Growth and Promotes Anaplastic Change in Thyroid Cancer in a Mouse Model. Endocrinology, 2013, 154, 2936-2947.	1.4	55
67	Reactivation of the Silenced Thyroid Hormone Receptor Î ² Gene Expression Delays Thyroid Tumor Progression. Endocrinology, 2013, 154, 25-35.	1.4	49
68	Nuclear receptor corepressor (NCOR1) regulates in vivo actions of a mutated thyroid hormone receptor α. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7850-7855.	3.3	38
69	Oncogenic Actions of the Nuclear Receptor Corepressor (NCOR1) in a Mouse Model of Thyroid Cancer. PLoS ONE, 2013, 8, e67954.	1.1	20
70	Inhibition of estrogen-dependent tumorigenesis by the thyroid hormone receptor β in xenograft models. American Journal of Cancer Research, 2013, 3, 302-11.	1.4	21
71	Advanced Bone Formation in Mice with a Dominant-negative Mutation in the Thyroid Hormone Receptor β Gene due to Activation of Wnt/β-Catenin Protein Signaling. Journal of Biological Chemistry, 2012, 287, 17812-17822.	1.6	37
72	SKI-606, an Src Inhibitor, Reduces Tumor Growth, Invasion, and Distant Metastasis in a Mouse Model of Thyroid Cancer. Clinical Cancer Research, 2012, 18, 1281-1290.	3.2	39

#	Article	IF	CITATIONS
73	Role of TSH in the Spontaneous Development of Asymmetrical Thyroid Carcinoma in Mice with a Targeted Mutation in a Single Allele of the Thyroid Hormone-β Receptor. Endocrinology, 2012, 153, 5090-5100.	1.4	11
74	Extranuclear signaling of mutated thyroid hormone receptors in promoting metastatic spread in thyroid carcinogenesis. Steroids, 2011, 76, 885-91.	0.8	10
75	Resistance to thyroid hormone is modulated in vivo by the nuclear receptor corepressor (NCOR1). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17462-17467.	3.3	43
76	Global expression profiling reveals gain-of-function oncogenic activity of a mutated thyroid hormone receptor in thyroid carcinogenesis. American Journal of Cancer Research, 2011, 1, 168-191.	1.4	5
77	New insights into regulation of lipid metabolism by thyroid hormone. Current Opinion in Endocrinology, Diabetes and Obesity, 2010, 17, 408-413.	1.2	78
78	Inhibition of mTORC1 signaling reduces tumor growth but does not prevent cancer progression in a mouse model of thyroid cancer. Carcinogenesis, 2010, 31, 1284-1291.	1.3	30
79	Tumor Suppressor Action of Liganded Thyroid Hormone Receptor β by Direct Repression of β-Catenin Gene Expression. Endocrinology, 2010, 151, 5528-5536.	1.4	33
80	Growth Activation Alone Is Not Sufficient to Cause Metastatic Thyroid Cancer in a Mouse Model of Follicular Thyroid Carcinoma. Endocrinology, 2010, 151, 1929-1939.	1.4	55
81	Molecular Aspects of Thyroid Hormone Actions. Endocrine Reviews, 2010, 31, 139-170.	8.9	1,102
82	Novel oncogenic actions of TRÎ ² mutants in tumorigenesis. IUBMB Life, 2009, 61, 528-536.	1.5	20
83	Nongenomic activation of phosphatidylinositol 3-kinase signaling by thyroid hormone receptors. Steroids, 2009, 74, 628-634.	0.8	52
84	Novel non-genomic signaling of thyroid hormone receptors in thyroid carcinogenesis. Molecular and Cellular Endocrinology, 2009, 308, 63-69.	1.6	39
85	Regulation of β-Catenin by a Novel Nongenomic Action of Thyroid Hormone β Receptor. Molecular and Cellular Biology, 2008, 28, 4598-4608.	1.1	77
86	Nuclear Receptor Corepressor Is a Novel Regulator of Phosphatidylinositol 3-Kinase Signaling. Molecular and Cellular Biology, 2007, 27, 6116-6126.	1.1	35
87	Impaired Adipogenesis Caused by a Mutated Thyroid Hormone α1 Receptor. Molecular and Cellular Biology, 2007, 27, 2359-2371.	1.1	73
88	Thyroid hormone receptor mutations and disease: insights from knock-in mouse models. Expert Review of Endocrinology and Metabolism, 2007, 2, 47-57.	1.2	2
89	Inhibition of phosphatidylinositol 3-kinase delays tumor progression and blocks metastatic spread in a mouse model of thyroid cancer. Carcinogenesis, 2007, 28, 2451-2458.	1.3	99
90	Gelsolin: A Novel Thyroid Hormone Receptor-Î ² Interacting Protein that Modulates Tumor Progression in a Mouse Model of Follicular Thyroid Cancer. Endocrinology, 2007, 148, 1306-1312.	1.4	26

#	Article	IF	CITATIONS
91	Novel functions of thyroid hormone receptor mutants: Beyond nucleus-initiated transcription. Steroids, 2007, 72, 171-179.	0.8	27
92	Rapid nongenomic actions of thyroid hormone. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14104-14109.	3.3	330
93	Characterization of skeletal phenotypes of TRα1PV and TRβPV mutant mice: implications for tissue thyroid status and T3 target gene expression. Nuclear Receptor Signaling, 2006, 4, nrs.04011.	1.0	47
94	The pituitary tumor-transforming gene promotes angiogenesis in a mouse model of follicular thyroid cancer. Carcinogenesis, 2006, 28, 932-939.	1.3	45
95	Activation of phosphatidylinositol 3-kinase signaling by a mutant thyroid hormone beta receptor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1780-1785.	3.3	141
96	Aberrant accumulation of PTTG1 induced by a mutated thyroid hormone \hat{l}^2 receptor inhibits mitotic progression. Journal of Clinical Investigation, 2006, 116, 2972-2984.	3.9	79
97	Chromosomal aberrations in cell lines derived from thyroid tumors spontaneously developed in TRβPV/PV mice. Cancer Genetics and Cytogenetics, 2005, 161, 104-109.	1.0	13
98	Hyperactivity, impaired learning on a vigilance task, and a differential response to methylphenidate in the TRβPV knock-in mouse. Psychopharmacology, 2005, 181, 653-663.	1.5	51
99	An Unliganded Thyroid Hormone Î ² Receptor Activates the Cyclin D1/Cyclin-Dependent Kinase/Retinoblastoma/E2F Pathway and Induces Pituitary Tumorigenesis. Molecular and Cellular Biology, 2005, 25, 124-135.	1.1	100
100	Thyroid hormone receptor mutants: Dominant negative regulators of peroxisome proliferator-activated receptor action. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16251-16256.	3.3	47
101	Thyroid Hormones Regulate Fibroblast Growth Factor Receptor Signaling during Chondrogenesis. Endocrinology, 2005, 146, 5568-5580.	1.4	75
102	AKT Activation Promotes Metastasis in a Mouse Model of Follicular Thyroid Carcinoma. Endocrinology, 2005, 146, 4456-4463.	1.4	100
103	Contrasting Skeletal Phenotypes in Mice with an Identical Mutation Targeted to Thyroid Hormone Receptor $\hat{I}\pm 1$ or \hat{I}^2 . Molecular Endocrinology, 2005, 19, 3045-3059.	3.7	121
104	Dual Functions of the Steroid Hormone Receptor Coactivator 3 in Modulating Resistance to Thyroid Hormone. Molecular and Cellular Biology, 2005, 25, 7687-7695.	1.1	29
105	Isoform-dependent actions of thyroid hormone nuclear receptors: Lessons from knockin mutant mice. Steroids, 2005, 70, 450-454.	0.8	58
106	Thyroid hormone receptor mutations and disease: beyond thyroid hormone resistance. Trends in Endocrinology and Metabolism, 2005, 16, 176-182.	3.1	83
107	A Tumor Suppressor Role for Thyroid Hormone \hat{l}^2 Receptor in a Mouse Model of Thyroid Carcinogenesis. Endocrinology, 2004, 145, 4430-4438.	1.4	50
108	Cardiac glucose utilization in mice with mutated α- and β-thyroid hormone receptors. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E1149-E1153.	1.8	18

#	Article	IF	CITATIONS
109	Multi-tissue gene-expression analysis in a mouse model of thyroid hormone resistance. Genome Biology, 2004, 5, R31.	13.9	37
110	Abnormalities of Nuclear Receptors in Thyroid Cancer. , 2004, 122, 165-178.		5
111	Thyroid hormone receptor mutations in cancer. Molecular and Cellular Endocrinology, 2003, 213, 23-30.	1.6	44
112	Alterations in genomic profiles during tumor progression in a mouse model of follicular thyroid carcinoma. Carcinogenesis, 2003, 24, 1467-1479.	1.3	68
113	Cardiac Expression and Function of Thyroid Hormone Receptor \hat{I}^2 and Its PV Mutant. Endocrinology, 2003, 144, 4820-4825.	1.4	37
114	Functional Activation of Cerebral Metabolism in Mice with Mutated Thyroid Hormone Nuclear Receptors. Endocrinology, 2003, 144, 4117-4122.	1.4	29
115	Compensatory Role of Thyroid Hormone Receptor (TR)α1 in Resistance to Thyroid Hormone: Study in Mice with a Targeted Mutation in the TRβ Gene and Deficient in TRα1. Molecular Endocrinology, 2003, 17, 1647-1655.	3.7	15
116	Modulation by Steroid Receptor Coactivator-1 of Target-Tissue Responsiveness in Resistance to Thyroid Hormone. Endocrinology, 2003, 144, 4144-4153.	1.4	37
117	A Thyrotoxic Skeletal Phenotype of Advanced Bone Formation in Mice with Resistance to Thyroid Hormone. Molecular Endocrinology, 2003, 17, 1410-1424.	3.7	112
118	Mutant thyroid hormone receptor beta represses the expression and transcriptional activity of peroxisome proliferator-activated receptor gamma during thyroid carcinogenesis. Cancer Research, 2003, 63, 5274-80.	0.4	61
119	Differential Expression of Thyroid Hormone Receptor Isoforms Dictates the Dominant Negative Activity of Mutant β Receptor. Molecular Endocrinology, 2002, 16, 2077-2092.	3.7	55
120	Functionally Impaired TR Mutants Are Present in Thyroid Papillary Cancer. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 1120-1128.	1.8	105
121	Expression of mutant thyroid hormone nuclear receptors is associated with human renal clear cell carcinoma. Carcinogenesis, 2002, 23, 25-33.	1.3	92
122	Mice with a Mutation in the Thyroid Hormone Receptor β Gene Spontaneously Develop Thyroid Carcinoma: A Mouse Model of Thyroid Carcinogenesis. Thyroid, 2002, 12, 963-969.	2.4	182
123	Knock-in Mouse Model for Resistance to Thyroid Hormone (RTH): An RTH Mutation in the Thyroid Hormone Receptor Beta Gene Disrupts Cochlear Morphogenesis. , 2002, 3, 279-288.		43
124	Silencing of Wnt Signaling and Activation of Multiple Metabolic Pathways in Response to Thyroid Hormone-Stimulated Cell Proliferation. Molecular and Cellular Biology, 2001, 21, 6626-6639.	1.1	85
125	Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. , 2000, 1, 9-18.		164
126	The Orphan Nuclear Receptor Ear-2 Is a Negative Coregulator for Thyroid Hormone Nuclear Receptor Function. Molecular and Cellular Biology, 2000, 20, 2604-2618.	1.1	36

#	Article	IF	CITATIONS
127	Expression of thyroid hormone receptors is disturbed in human renal clear cell carcinoma. Cancer Letters, 2000, 155, 145-152.	3.2	55
128	Thyroid Hormone-Induced Cell Proliferation in GC Cells Is Mediated by Changes in G1 Cyclin/Cyclin-Dependent Kinase Levels and Activity. Endocrinology, 1999, 140, 5267-5274.	1.4	55
129	Tissue-Specific Differential Repression of Gene Expression by a Dominant Negative Mutant of Thyroid Hormone β1 Receptor. Thyroid, 1999, 9, 411-418.	2.4	5
130	Hormone-induced Translocation of Thyroid Hormone Receptors in Living Cells Visualized Using a Receptor Green Fluorescent Protein Chimera. Journal of Biological Chemistry, 1998, 273, 27058-27063.	1.6	103
131	Differential Sensitivity of Thyroid Hormone Receptor Isoform Homodimers and Mutant Heterodimers to Hormone-Induced Dissociation from Deoxyribonucleic Acid: Its Role in Dominant Negative Action. Endocrinology, 1997, 138, 1456-1463.	1.4	10
132	Dominant Negative Activity of Mutant Thyroid Hormone α1 Receptors from Patients with Hepatocellular Carcinoma*. Endocrinology, 1997, 138, 5308-5315.	1.4	50
133	Hormone-Activated Phosphorylation of Human β1 Thyroid Hormone Nuclear Receptor. Thyroid, 1997, 7, 463-469.	2.4	16
134	Tissue-specific Stabilization of the Thyroid Hormone β1 Nuclear Receptor by Phosphorylation. Journal of Biological Chemistry, 1997, 272, 4129-4134.	1.6	26
135	Tissue-dependent developmental expression of a cytosolic thyroid hormone protein gene inXenopus: Its role in the regulation of amphibian metamorphosis. FEBS Letters, 1994, 355, 61-64.	1.3	40
136	An Essential Role of Domain D in the Hormone-Binding Activity of Human β1 Thyroid Hormone Nuclear Receptor. Molecular Endocrinology, 1991, 5, 485-492.	3.7	53
137	Antibodies against the human cellular 3,3′,5-triiodo-L-thyronine-binding protein (p58). FEBS Letters, 1988, 230, 9-12.	1.3	4
138	Antipeptide Antibodies Recognize c-erbA and a Related Protein in Human A431 Carcinoma Cells. Endocrinology, 1988, 123, 2646-2652.	1.4	26
139	Characterization of the 3,3′,5-Triiodo-L-Thyronine Binding Site on Plasma Membranes from Human Placenta. Endocrinology, 1985, 116, 2621-2630.	1.4	30
140	Structural Similarities between the Plasma Membrane Binding Sites for L-Thyroxine and 3,3′,5-Triiodo-L- Thyronine in Cultured Cells. Journal of Receptors and Signal Transduction, 1985, 5, 1-26.	1.2	11
141	Blocking CDK7-mediated NOTCH1-cMYC Signaling Attenuates Cancer Stem Cell Activity in Anaplastic Thyroid Cancer. Thyroid, 0, , .	2.4	1