Manju A Kurian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8870485/publications.pdf

Version: 2024-02-01

73 papers

4,456 citations

145106 33 h-index 62 g-index

75 all docs

75 docs citations

75 times ranked 9068 citing authors

#	Article	IF	CITATIONS
1	Biallelic <scp><i>AOPEP</i></scp> Lossâ€ofâ€Function Variants Cause Progressive Dystonia with Prominent Limb Involvement. Movement Disorders, 2022, 37, 137-147.	2.2	14
2	The dopamine transporter gene SLC6A3: multidisease risks. Molecular Psychiatry, 2022, 27, 1031-1046.	4.1	28
3	Structural mapping of GABRB3 variants reveals genotype–phenotype correlations. Genetics in Medicine, 2022, 24, 681-693.	1.1	10
4	Relationship of Genotype, Phenotype, and Treatment in Dopaâ€Responsive Dystonia: <scp>MDSGene</scp> Review. Movement Disorders, 2022, 37, 237-252.	2.2	19
5	Comparison of methylation episignatures in <i>KMT2B</i> - and <i>KMT2D</i> -related human disorders. Epigenomics, 2022, 14, 537-547.	1.0	10
6	Highlighting the Dystonic Phenotype Related to <scp><i>GNAO1</i></scp> . Movement Disorders, 2022, 37, 1547-1554.	2.2	25
7	<scp><i>STXBP1</i></scp> Stopâ€Loss Mutation Associated with Complex Early Onset Movement Disorder without Epilepsy. Movement Disorders Clinical Practice, 2022, 9, 837-840.	0.8	3
8	Freezing of Gait as a Complication of Pallidal Deep Brain Stimulation in <scp>DYTâ€∢i>KMT2B</scp> Patients with Evidence of Striatonigral Degeneration. Movement Disorders Clinical Practice, 2022, 9, 992-996.	0.8	1
9	Precision medicine for genetic childhood movement disorders. Developmental Medicine and Child Neurology, 2021, 63, 925-933.	1.1	4
10	Aromatic <scp> </scp> -amino acid decarboxylase deficiency: a patient-derived neuronal model for precision therapies. Brain, 2021, 144, 2443-2456.	3.7	16
11	A Recurrent <scp><i>VPS16</i></scp> p.Arg187* Nonsense Variant in Earlyâ€Onset Generalized Dystonia. Movement Disorders, 2021, 36, 1984-1985.	2.2	7
12	An Update on the Phenotype, Genotype and Neurobiology of <scp>ADCY5â€Related</scp> Disease. Movement Disorders, 2021, 36, 1104-1114.	2.2	24
13	Childhoodâ€Onset Chorea Caused by a Recurrent De Novo <i>DRD2</i> Variant. Movement Disorders, 2021, 36, 1472-1473.	2.2	6
14	Assessment of intellectual impairment, healthâ€related quality of life, and behavioral phenotype in patients with neurotransmitter related disorders: Data from the <scp>iNTD</scp> registry. Journal of Inherited Metabolic Disease, 2021, 44, 1489-1502.	1.7	7
15	Commentary: Galactosemia Diagnosis by Whole Exome Sequencing Later in Life. Movement Disorders Clinical Practice, 2021, 8, S40-S41.	0.8	0
16	Commentary: <scp>GM1</scp> â€Gangliosidosis Type <scp>III</scp> Associated Parkinsonism. Movement Disorders Clinical Practice, 2021, 8, S24-S25.	0.8	0
17	Consensus clinical management guideline for betaâ€propeller proteinâ€associated neurodegeneration. Developmental Medicine and Child Neurology, 2021, 63, 1402-1409.	1.1	17
18	Enhanced cGAS-STING–dependent interferon signaling associated with mutations in ATAD3A. Journal of Experimental Medicine, 2021, 218, .	4.2	43

#	Article	IF	CITATIONS
19	TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila. American Journal of Human Genetics, 2021, 108, 1669-1691.	2.6	23
20	Insights into the expanding phenotypic spectrum of inherited disorders of biogenic amines. Nature Communications, 2021, 12, 5529.	5.8	21
21	<i>RHOBTB2</i> Mutations Expand the Phenotypic Spectrum of Alternating Hemiplegia of Childhood. Neurology, 2021, 96, e1539-e1550.	1.5	15
22	The role of manganese dysregulation in neurological disease: emerging evidence. Lancet Neurology, The, 2021, 20, 956-968.	4.9	51
23	Towards Precision Therapies for Inherited Disorders of Neurodegeneration with Brain Iron Accumulation. Tremor and Other Hyperkinetic Movements, 2021, 11, 51.	1.1	7
24	Biallelic Mutations of <i>TBC1D24</i> in Exerciseâ€Induced Paroxysmal Dystonia. Movement Disorders, 2020, 35, 372-373.	2.2	8
25	The expanding spectrum of movement disorders in genetic epilepsies. Developmental Medicine and Child Neurology, 2020, 62, 178-191.	1.1	31
26	Recent genetic advances in early-onset dystonia. Current Opinion in Neurology, 2020, 33, 500-507.	1.8	5
27	Lossâ€ofâ€Function Variants in <scp>HOPS</scp> Complex Genes <scp><i>VPS16</i></scp> and <scp><i>VPS41</i></scp> Cause Early Onset Dystonia Associated with Lysosomal Abnormalities. Annals of Neurology, 2020, 88, 867-877.	2.8	70
28	<i>KMT2B</i> -related disorders: expansion of the phenotypic spectrum and long-term efficacy of deep brain stimulation. Brain, 2020, 143, 3242-3261.	3.7	57
29	<scp>AADC</scp> deficiency from infancy to adulthood: Symptoms and developmental outcome in an international cohort of 63 patients. Journal of Inherited Metabolic Disease, 2020, 43, 1121-1130.	1.7	59
30	<scp><i>DNAJC6</i></scp> Mutations Disrupt Dopamine Homeostasis in Juvenile <scp>Parkinsonismâ€Dystonia</scp> . Movement Disorders, 2020, 35, 1357-1368.	2.2	22
31	<i>KIF1A</i> ê€related disorders in children: A wide spectrum of central and peripheral nervous system involvement. Journal of the Peripheral Nervous System, 2020, 25, 117-124.	1.4	40
32	Autosomal dominant mitochondrial membrane proteinâ€associated neurodegeneration (MPAN). Molecular Genetics & Genomic Medicine, 2019, 7, e00736.	0.6	40
33	Frequency and phenotypic spectrum of <i>KMT2B</i> dystonia in childhood: A singleâ€center cohort study. Movement Disorders, 2019, 34, 1516-1527.	2.2	55
34	Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia. American Journal of Human Genetics, 2019, 104, 948-956.	2.6	45
35	Yield of comparative genomic hybridization microarray in pediatric neurology practice. Neurology: Genetics, 2019, 5, e367.	0.9	4
36	Phenotypes, genotypes, and the management of paroxysmal movement disorders. Developmental Medicine and Child Neurology, 2018, 60, 559-565.	1.1	31

#	Article	IF	Citations
37	Neurodegeneration with brain iron accumulation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 147, 293-305.	1.0	153
38	Clinical and molecular characterization of <i>KCNT1</i> -related severe early-onset epilepsy. Neurology, 2018, 90, e55-e66.	1.5	89
39	Spectrum of movement disorders and neurotransmitter abnormalities in paediatric <i>POLG </i> disease. Journal of Inherited Metabolic Disease, 2018, 41, 1275-1283.	1.7	12
40	Postsynaptic movement disorders: clinical phenotypes, genotypes, and disease mechanisms. Journal of Inherited Metabolic Disease, 2018, 41, 1077-1091.	1.7	24
41	<i>GNAO1</i> encephalopathy. Neurology: Genetics, 2017, 3, e143.	0.9	84
42	Consensus clinical management guideline for pantothenate kinase-associated neurodegeneration (PKAN). Molecular Genetics and Metabolism, 2017, 120, 278-287.	0.5	64
43	Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nature Genetics, 2017, 49, 223-237.	9.4	186
44	Not all <i>SCN1A</i> epileptic encephalopathies are Dravet syndrome. Neurology, 2017, 89, 1035-1042.	1.5	97
45	Utility of Induced Pluripotent Stem Cells for the Study and Treatment of Genetic Diseases: Focus on Childhood Neurological Disorders. Frontiers in Molecular Neuroscience, 2016, 9, 78.	1.4	29
46	Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis. Journal of Medical Genetics, 2016, 53, 310-317.	1.5	191
47	Delineation of the movement disorders associated with <i>FOXG1</i> mutations. Neurology, 2016, 86, 1794-1800.	1.5	55
48	De Novo Mutations in PDE10A Cause Childhood-Onset Chorea with Bilateral Striatal Lesions. American Journal of Human Genetics, 2016, 98, 763-771.	2.6	96
49	Biallelic Mutations in PDE10A Lead to Loss of Striatal PDE10A and a Hyperkinetic Movement Disorder with Onset in Infancy. American Journal of Human Genetics, 2016, 98, 735-743.	2.6	65
50	Psychiatric disorders, myoclonus dystonia and <i> <scp>SGCE</scp> </i> : an international study. Annals of Clinical and Translational Neurology, 2016, 3, 4-11.	1.7	43
51	<i>GABRB3</i> mutations: a new and emerging cause of early infantile epileptic encephalopathy. Developmental Medicine and Child Neurology, 2016, 58, 416-420.	1.1	56
52	<i><scp>RARS</scp>2</i> mutations in a sibship with infantile spasms. Epilepsia, 2016, 57, e97-e102.	2.6	23
53	Absence of the Autophagy Adaptor SQSTM1/p62 Causes Childhood-Onset Neurodegeneration with Ataxia, Dystonia, and Gaze Palsy. American Journal of Human Genetics, 2016, 99, 735-743.	2.6	99
54	The clinical syndrome of dystonia with anarthria/aphonia. Parkinsonism and Related Disorders, 2016, 24, 20-27.	1.1	10

#	Article	IF	Citations
55	<i>LYRM7</i> mutations cause a multifocal cavitating leukoencephalopathy with distinct MRI appearance. Brain, 2016, 139, 782-794.	3.7	51
56	The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurology, The, 2016, 15, 304-316.	4.9	474
57	The novel R347g pathogenic mutation of aromatic amino acid decarboxylase provides additional molecular insights into enzyme catalysis and deficiency. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 676-682.	1.1	15
58	Faulty cardiac repolarization reserve in alternating hemiplegia of childhood broadens the phenotype. Brain, 2015, 138, 2859-2874.	3.7	30
59	Neurodegeneration with Brain Iron Accumulation: Genetic Diversity and Pathophysiological Mechanisms. Annual Review of Genomics and Human Genetics, 2015, 16, 257-279.	2.5	195
60	Monoamine neurotransmitter disordersâ€"clinical advances and future perspectives. Nature Reviews Neurology, 2015, 11, 567-584.	4.9	221
61	The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain, 2015, 138, 3567-3580.	3.7	129
62	Benign Hereditary Chorea: An Update. Tremor and Other Hyperkinetic Movements, 2015, 5, 314.	1.1	30
63	Genetic disorders of thyroid metabolism and brain development. Developmental Medicine and Child Neurology, 2014, 56, 627-634.	1.1	19
64	Atypical <i>PLA2G6</i> â€Associated Neurodegeneration: Social Communication Impairment, Dystonia and Response to Deep Brain Stimulation. Movement Disorders Clinical Practice, 2014, 1, 128-131.	0.8	13
65	A type I interferon signature identifies bilateral striatal necrosis due to mutations in <i>ADAR1 </i> Journal of Medical Genetics, 2014, 51, 76-82.	1.5	118
66	Exome Sequence Reveals Mutations in CoA Synthase as a Cause of Neurodegeneration with Brain Iron Accumulation. American Journal of Human Genetics, 2014, 94, 11-22.	2.6	176
67	Severe infantile epileptic encephalopathy due to mutations in <i><scp>PLCB</scp>1</i> : expansion of the genotypic and phenotypic disease spectrum. Developmental Medicine and Child Neurology, 2014, 56, 1124-1128.	1.1	21
68	What is new for monoamine neurotransmitter disorders?. Journal of Inherited Metabolic Disease, 2014, 37, 619-626.	1.7	40
69	Pantothenate Kinase-Associated Neurodegeneration (PKAN) and PLA2G6-Associated Neurodegeneration (PLAN). International Review of Neurobiology, 2013, 110, 49-71.	0.9	68
70	Beta-propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain, 2013, 136, 1708-1717.	3.7	203
71	Migrating partial seizures of infancy: expansion of the electroclinical, radiological and pathological disease spectrum. Brain, 2013, 136, 1578-1591.	3.7	144
72	Exome Sequencing Reveals De Novo WDR45 Mutations Causing a Phenotypically Distinct, X-Linked Dominant Form of NBIA. American Journal of Human Genetics, 2012, 91, 1144-1149.	2.6	309

#	Article	IF	CITATIONS
73	Niemann–Pick type C disease as proofâ€ofâ€concept for intelligent biomarker panel selection in neurometabolic disorders. Developmental Medicine and Child Neurology, 0, , .	1.1	6