
Loic Guillot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/887034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Involvement of Toll-like Receptor 3 in the Immune Response of Lung Epithelial Cells to Double-stranded RNA and Influenza A Virus. Journal of Biological Chemistry, 2005, 280, 5571-5580.	1.6	591
2	Response of Human Pulmonary Epithelial Cells to Lipopolysaccharide Involves Toll-like Receptor 4 (TLR4)-dependent Signaling Pathways. Journal of Biological Chemistry, 2004, 279, 2712-2718.	1.6	320
3	Cutting Edge: The Immunostimulatory Activity of the Lung Surfactant Protein-A Involves Toll-Like Receptor 4. Journal of Immunology, 2002, 168, 5989-5992.	0.4	305
4	Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis. Nature Communications, 2015, 6, 8382.	5.8	242
5	Alveolar epithelial cells: Master regulators of lung homeostasis. International Journal of Biochemistry and Cell Biology, 2013, 45, 2568-2573.	1.2	187
6	NOD2-Deficient Mice Have Impaired Resistance to <i>Mycobacterium tuberculosis</i> Infection through Defective Innate and Adaptive Immunity. Journal of Immunology, 2008, 181, 7157-7165.	0.4	183
7	Benign hereditary chorea: phenotype, prognosis, therapeutic outcome and long term follow-up in a large series with new mutations in the <i>TITF1/NKX2-1</i> gene. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 956-962.	0.9	172
8	NKX2-1mutations leading to surfactant protein promoter dysregulation cause interstitial lung disease in "Brain-Lung-Thyroid Syndrome― Human Mutation, 2010, 31, E1146-E1162.	1.1	108
9	Innate Immune Signaling and Proteolytic Pathways in the Resolution or Exacerbation of SARS-CoV-2 in Covid-19: Key Therapeutic Targets?. Frontiers in Immunology, 2020, 11, 1229.	2.2	105
10	Characteristics of disorders associated with genetic mutations of surfactant protein C. Archives of Disease in Childhood, 2010, 95, 449-454.	1.0	103
11	New surfactant protein C gene mutations associated with diffuse lung disease. Journal of Medical Genetics, 2009, 46, 490-494.	1.5	100
12	Neutrophil Elastase Degrades Cystic Fibrosis Transmembrane Conductance Regulator via Calpains and Disables Channel Function <i>In Vitro</i> and <i>In Vivo</i> American Journal of Respiratory and Critical Care Medicine, 2013, 187, 170-179.	2.5	97
13	Cystic Fibrosis Liver Disease: Outcomes and Risk Factors in a Large Cohort of French Patients. Hepatology, 2019, 69, 1648-1656.	3.6	93
14	Molecular and cellular characteristics of ABCA3 mutations associated with diffuse parenchymal lung diseases in children. Human Molecular Genetics, 2012, 21, 765-775.	1.4	85
15	Lung disease modifier genes in cystic fibrosis. International Journal of Biochemistry and Cell Biology, 2014, 52, 83-93.	1.2	66
16	Enhanced Innate Immune Responsiveness to Pulmonary <i>Cryptococcus neoformans</i> Infection Is Associated with Resistance to Progressive Infection. Infection and Immunity, 2008, 76, 4745-4756.	1.0	58
17	Regulation of angiopoietin expression by bacterial lipopolysaccharide. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L955-L963.	1.3	57
18	Translating the genetics of cystic fibrosis to personalized medicine. Translational Research, 2016, 168, 40-49.	2.2	54

LOIC GUILLOT

#	Article	IF	CITATIONS
19	Lung alveolar epithelium and interstitial lung disease. International Journal of Biochemistry and Cell Biology, 2009, 41, 1643-1651.	1.2	50
20	FAM13A is a modifier gene of cystic fibrosis lung phenotype regulating rhoa activity, actin cytoskeleton dynamics and epithelial-mesenchymal transition. Journal of Cystic Fibrosis, 2018, 17, 190-203.	0.3	45
21	Azithromycin analogue <scp>CSY</scp> 0073 attenuates lung inflammation induced by <scp>LPS</scp> challenge. British Journal of Pharmacology, 2014, 171, 1783-1794.	2.7	44
22	Anoctamin 1 dysregulation alters bronchial epithelial repair in cystic fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2340-2351.	1.8	40
23	Cryptococcus neoformans induces IL-8 secretion and CXCL1 expression by human bronchial epithelial cells. Respiratory Research, 2008, 9, 9.	1.4	38
24	Extreme phenotypic variability of thyroid dysgenesis in six new cases of congenital hypothyroidism due to PAX8 gene loss-of-function mutations. European Journal of Endocrinology, 2014, 171, 499-507.	1.9	38
25	A Novel <i>FOXE1</i> Mutation (R73S) in Bamforth–Lazarus Syndrome Causing Increased Thyroidal Gene Expression. Thyroid, 2014, 24, 649-654.	2.4	38
26	New Insights about miRNAs in Cystic Fibrosis. American Journal of Pathology, 2015, 185, 897-908.	1.9	37
27	Human Bronchial Epithelial Cells Inhibit Aspergillus fumigatus Germination of Extracellular Conidia via FleA Recognition. Scientific Reports, 2018, 8, 15699.	1.6	35
28	Genetic Modifiers of Cystic Fibrosis-Related Diabetes Have Extensive Overlap With Type 2 Diabetes and Related Traits. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1401-1415.	1.8	34
29	TLR4 and MyD88 control protection and pulmonary granulocytic recruitment in a murine intranasal RSV immunization and challenge model. Vaccine, 2009, 27, 421-430.	1.7	33
30	First Wave of COVID-19 in French Patients with Cystic Fibrosis. Journal of Clinical Medicine, 2020, 9, 3624.	1.0	33
31	Cigarette smoke and electronic cigarettes differentially activate bronchial epithelial cells. Respiratory Research, 2020, 21, 67.	1.4	33
32	Moving beyond genetics: isFAM13Aa major biological contributor in lung physiology and chronic lung diseases?. Journal of Medical Genetics, 2014, 51, 646-649.	1.5	31
33	Bronchial Epithelial Cells from Cystic Fibrosis Patients Express a Specific Long Non-coding RNA Signature upon Pseudomonas aeruginosa Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 218.	1.8	31
34	DNA methylation at modifier genes of lung disease severity is altered in cystic fibrosis. Clinical Epigenetics, 2017, 9, 19.	1.8	29
35	SLC26A9 Gene Is Associated With Lung Function Response to Ivacaftor in Patients With Cystic Fibrosis. Frontiers in Pharmacology, 2018, 9, 828.	1.6	29
36	Glucocorticoids reduce inflammation in cystic fibrosis bronchial epithelial cells. Cellular Signalling, 2012, 24, 1093-1099.	1.7	25

LOIC GUILLOT

#	Article	IF	CITATIONS
37	CHAC1 Is Differentially Expressed in Normal and Cystic Fibrosis Bronchial Epithelial Cells and Regulates the Inflammatory Response Induced by Pseudomonas aeruginosa. Frontiers in Immunology, 2018, 9, 2823.	2.2	25
38	SERPINA1 Z allele is associated with cystic fibrosis liver disease. Genetics in Medicine, 2019, 21, 2151-2155.	1.1	25
39	Normal and Cystic Fibrosis Human Bronchial Epithelial Cells Infected with Pseudomonas aeruginosa Exhibit Distinct Gene Activation Patterns. PLoS ONE, 2015, 10, e0140979.	1.1	22
40	Macrolides: New therapeutic perspectives in lung diseases. International Journal of Biochemistry and Cell Biology, 2011, 43, 1241-1246.	1.2	21
41	Mammalian model hosts of cryptococcal infection. Comparative Medicine, 2007, 57, 9-17.	0.4	21
42	Multiplex Ligation-Dependent Probe Amplification Improves the Detection Rate of <i>NKX2.1</i> Mutations in Patients Affected by Brain-Lung-Thyroid Syndrome. Hormone Research in Paediatrics, 2012, 77, 146-151.	0.8	20
43	Bronchial Epithelial Cells on the Front Line to Fight Lung Infection-Causing Aspergillus fumigatus. Frontiers in Immunology, 2020, 11, 1041.	2.2	19
44	Update on SLC6A14 in lung and gastrointestinal physiology and physiopathology: focus on cystic fibrosis. Cellular and Molecular Life Sciences, 2020, 77, 3311-3323.	2.4	18
45	Respiratory Epithelial Cells Can Remember Infection: A Proof of Concept Study. Journal of Infectious Diseases, 2019, 221, 1000-1005.	1.9	17
46	Azithromycin fails to reduce inflammation in cystic fibrosis airway epithelial cells. European Journal of Pharmacology, 2012, 674, 1-6.	1.7	15
47	Sex differences in the genetic architecture of susceptibility to Cryptococcus neoformans pulmonary infection. Genes and Immunity, 2008, 9, 536-545.	2.2	11
48	Restoration of Chloride Efflux by Azithromycin in Airway Epithelial Cells of Cystic Fibrosis Patients. Antimicrobial Agents and Chemotherapy, 2011, 55, 1792-1793.	1.4	11
49	Flagellin From Pseudomonas aeruginosa Modulates SARS-CoV-2 Infectivity in Cystic Fibrosis Airway Epithelial Cells by Increasing TMPRSS2 Expression. Frontiers in Immunology, 2021, 12, 714027.	2.2	9
50	Risk factors for Pseudomonas aeruginosa airway infection and lung function decline in children with cystic fibrosis. Journal of Cystic Fibrosis, 2022, 21, 45-51.	0.3	8
51	Two-hybrid screening of FAM13A protein partners in lung epithelial cells. BMC Research Notes, 2019, 12, 804.	0.6	6
52	Gene Therapy: A Possible Alternative to CFTR Modulators?. Frontiers in Pharmacology, 2021, 12, 648203.	1.6	4
53	BAL Fluid Surfactant Protein C Level Is Related to Parenchymal Lung Disease in Children With Sarcoidosis. Chest, 2011, 140, 1104-1105.	0.4	3
54	Anti-Inflammatory Macrolides to Manage Chronic Neutrophilic Inflammation. RSC Drug Discovery Series, 2014, , 206-234.	0.2	3

LOIC GUILLOT

#	Article	IF	CITATIONS
55	Factors Predisposing the Response to Lumacaftor/Ivacaftor in People with Cystic Fibrosis. Journal of Personalized Medicine, 2022, 12, 252.	1.1	3
56	SLC6A14 Impacts Cystic Fibrosis Lung Disease Severity via mTOR and Epithelial Repair Modulation. Frontiers in Molecular Biosciences, 2022, 9, 850261.	1.6	3
57	Opposite Expression of Hepatic and Pulmonary Corticosteroid-Binding Globulin in Cystic Fibrosis Patients. Frontiers in Pharmacology, 2018, 9, 545.	1.6	2
58	Editorial: Immune Responses of the Mucosal Epithelium in Chronic Lung Diseases. Frontiers in Immunology, 2020, 11, 626437.	2.2	1
59	Identification and Characterization of Two New TTF-1 Mutations Associated with Pediatric Interstitial Lung Diseases , 2009, , .		Ο
60	Azithromycin In Interstitial Lung Disease Associated With Surfactant Metabolism Disorders. , 2010, , .		0
61	New Mutations Of ABCA3 Associated With Neonatal Respiratory Distress And Diffuse Lung Disease. , 2010, , .		Ο
62	Are CF carriers predisposed to asthma?. Journal of Cystic Fibrosis, 2016, 15, 555-556.	0.3	0
63	642: SLC6A14 is associated with lung function in patients with cystic fibrosis, regulates epithelial repair and mTOR signaling in bronchial epithelial cells. Journal of Cystic Fibrosis, 2021, 20, S305.	0.3	0
64	Influenza A virus impairs antimicrobial molecules production in vitro in lung epithelial cells and in murine lung infection. , 2019, , .		0