Lars-Owe D Koskinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8870170/publications.pdf

Version: 2024-02-01

87 papers 4,331 citations

30 h-index 63 g-index

88 all docs 88 docs citations

88 times ranked 4806 citing authors

#	Article	IF	CITATIONS
1	Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurology, The, 2017, 16, 987-1048.	10.2	1,571
2	Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study. Lancet Neurology, The, 2019, 18, 923-934.	10.2	304
3	Effective ICP Reduction by Decompressive Craniectomy in Patients with Severe Traumatic Brain Injury Treated by an ICP-Targeted Therapy. Journal of Neurotrauma, 2007, 24, 927-935.	3.4	176
4	Reducing Intracranial Pressure May Increase Survival among Patients with Bacterial Meningitis. Clinical Infectious Diseases, 2004, 38, 384-390.	5 . 8	124
5	Anticoagulants and antiplatelet agents and the risk of development and recurrence of chronic subdural haematomas. Journal of Clinical Neuroscience, 2009, 16, 1287-1290.	1.5	121
6	Transcranial Doppler Pulsatility Index. Neurosurgery, 2010, 66, 1050-1057.	1.1	117
7	An outcome study of severe traumatic head injury using the "Lund therapy―with lowâ€dose prostacyclin. Acta Anaesthesiologica Scandinavica, 2001, 45, 402-406.	1.6	110
8	Clinical Experience with the Intraparenchymal Intracranial Pressure Monitoring Codman MicroSensor System. Neurosurgery, 2005, 56, 693-698.	1.1	104
9	Complications following cranioplasty using autologous bone or polymethylmethacrylate—Retrospective experience from a single center. Clinical Neurology and Neurosurgery, 2013, 115, 1788-1791.	1.4	102
10	Clinical applications of intracranial pressure monitoring in traumatic brain injury. Acta Neurochirurgica, 2014, 156, 1615-1622.	1.7	96
11	Severe traumatic brain injury in pediatric patients: treatment and outcome using an intracranial pressure targeted therapyâ€"the Lund concept. Intensive Care Medicine, 2005, 31, 832-839.	8.2	78
12	The pressure difference between eye and brain changes with posture. Annals of Neurology, 2016, 80, 269-276.	5.3	68
13	Acute neuro-endocrine profile and prediction of outcome after severe brain injury. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 2013, 21, 33.	2.6	60
14	Pulsatility in CSF dynamics: pathophysiology of idiopathic normal pressure hydrocephalus. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 735-741.	1.9	60
15	Thyrotropin-releasing hormone (TRH) causes sympathetic activation and cerebral vasodilation in the rabbit. Acta Physiologica Scandinavica, 1984, 122, 127-136.	2.2	54
16	Influence of age, gender and severity of tremor on outcome after thalamic and subthalamic DBS for essential tremor. Parkinsonism and Related Disorders, 2011, 17, 617-620.	2.2	49
17	The Fisher grading correlated to outcome in patients with subarachnoid haemorrhage. British Journal of Neurosurgery, 2009, 23, 188-192.	0.8	43
18	Prostacyclin Treatment in Severe Traumatic Brain Injury: A Microdialysis and Outcome Study. Journal of Neurotrauma, 2009, 26, 1251-1262.	3.4	43

#	Article	IF	CITATIONS
19	The complications and the position of the Codman MicroSensorâ, CICP device: an analysis of 549 patients and 650 Sensors. Acta Neurochirurgica, 2013, 155, 2141-2148.	1.7	40
20	Association of ICP, CPP, CT findings and S-100B and NSE in severe traumatic head injury. Prognostic value of the biomarkers. Brain Injury, 2015, 29, 446-454.	1.2	40
21	Effect of low intravenous doses of TRH, acidâ€TRH and cyclo(Hisâ€Pro) on cerebral and peripheral blood flows. British Journal of Pharmacology, 1986, 87, 509-519.	5.4	39
22	Human jugular vein collapse in the upright posture: implications for postural intracranial pressure regulation. Fluids and Barriers of the CNS, 2017, 14, 17.	5.0	38
23	Cerebrospinal fluid pulse pressure method: a possible substitute for the examination of B waves. Journal of Neurosurgery, 2004, 101, 944-950.	1.6	37
24	Inhalation of substance P and thiorphan: acute toxicity and effects on respiration in conscious guinea pigs. Journal of Applied Toxicology, 1999, 19, 19-23.	2.8	35
25	Testicular enlargement in a patient with a FSH-secreting pituitary adenoma. Endocrine, 2010, 37, 289-293.	2.3	35
26	Severe traumatic brain injury management and clinical outcome using the Lund concept. Neuroscience, 2014, 283, 245-255.	2.3	35
27	Regional cerebral, ocular and peripheral vascular effects of naloxone and morphine in unanesthetized rabbits. Acta Physiologica Scandinavica, 1983, 119, 235-241.	2.2	32
28	Cerebrospinal fluid hydrodynamics after placement of a shunt with an antisiphon device: a long-term study. Journal of Neurosurgery, 2001, 94, 750-756.	1.6	32
29	Fluid therapy and the use of albumin in the treatment of severe traumatic brain injury. Acta Anaesthesiologica Scandinavica, 2009, 53, 18-25.	1.6	32
30	Absence of electroencephalographic seizure activity in patients treated for head injury with an intracranial pressure†targeted therapy. Journal of Neurosurgery, 2009, 110, 300-305.	1.6	31
31	Aspects on the Physiological and Biochemical Foundations of Neurocritical Care. Frontiers in Neurology, 2017, 8, 274.	2.4	30
32	Antithrombin Treatment in Patients With Traumatic Brain Injury. Journal of Neurosurgical Anesthesiology, 2001, 13, 49-56.	1.2	29
33	Two computerized methods used to analyze intracranial pressure B waves: comparison with traditional visual interpretation. Journal of Neurosurgery, 2001, 94, 392-396.	1.6	28
34	The Efficacy of P6 Acupressure With Sea-Band in Reducing Postoperative Nausea and Vomiting in Patients Undergoing Craniotomy. Journal of Neurosurgical Anesthesiology, 2015, 27, 42-50.	1.2	28
35	The apolipoprotein E ε4 allele and outcome in severe traumatic brain injury treated by an intracranial pressure–targeted therapy. Journal of Neurosurgery, 2010, 112, 1113-1119.	1.6	26
36	Dynamics of brain tissue changes induced by traumatic brain injury assessed with the Marshall, Morris–Marshall, and the Rotterdam classifications and its impact on outcome in a prostacyclin placebo-controlled study. Acta Neurochirurgica, 2012, 154, 1069-1079.	1.7	24

#	Article	IF	CITATIONS
37	The IMPACT prognosis calculator used in patients with severe traumatic brain injury treated with an ICP-targeted therapy. Acta Neurochirurgica, 2012, 154, 1567-1573.	1.7	22
38	Regional glucose metabolism in the rabbit brain in control and TRHâ€treated animals. Acta Physiologica Scandinavica, 1986, 126, 349-353.	2.2	21
39	Cerebral and peripheral blood flow effects of TRH in the rat—A role of vagal nerves. Peptides, 1989, 10, 933-938.	2.4	21
40	Electromagnetic Environmental Influences on Implanted Deep Brain Stimulators. Neuromodulation, 2006, 9, 262-269.	0.8	21
41	Can intracranial pressure be measured non-invasively bedside using a two-depth Doppler-technique?. Journal of Clinical Monitoring and Computing, 2017, 31, 459-467.	1.6	20
42	Effects of raised intracranial pressure on regional cerebral blood flow: a comparison of effects of naloxone and TRH on the microcirculation in partial cerebral ischaemia. British Journal of Pharmacology, 1985, 85, 489-497.	5.4	19
43	Subdural hematomas in 1846 patients with shunted idiopathic normal pressure hydrocephalus: treatment and long-term survival. Journal of Neurosurgery, 2018, 129, 797-804.	1.6	19
44	Subarachnoid haemorrhage induces an inflammatory response followed by a delayed persisting increase in asymmetric dimethylarginine. Scandinavian Journal of Clinical and Laboratory Investigation, 2012, 72, 484-489.	1.2	18
45	The release of S-100B and NSE in severe traumatic head injury is associated with APOE ε4. Acta Neurochirurgica, 2012, 154, 675-680.	1.7	18
46	ADMA Levels and Arginine/ADMA Ratios Reflect Severity of Disease and Extent of Inflammation After Subarachnoid Hemorrhage. Neurocritical Care, 2014, 21, 91-101.	2.4	17
47	Prostacyclin treatment and clinical outcome in severe traumatic brain injury patients managed with an ICP-targeted therapy: A prospective study. Brain Injury, 2012, 26, 67-75.	1.2	16
48	Computed tomography and clinical outcome in patients with severe traumatic brain injury. Brain Injury, 2017, 31, 351-358.	1.2	16
49	Severe traumatic brain injuries in Northern Sweden: A prospective 2-year study. Journal of Rehabilitation Medicine, 2013, 45, 792-800.	1.1	15
50	SECTION VIII. TRH IN SHOCK AND SPINAL TRAUMA: Effects of TRH on Blood flow and the Microcirculation. Annals of the New York Academy of Sciences, 1989, 553, 353-369.	3.8	15
51	Prostacyclin treatment normalises the MCA flow velocity in nimodipine-resistant cerebral vasospasm after aneurysmal subarachnoid haemorrhage. Acta Neurochirurgica, 2009, 151, 595-599.	1.7	14
52	Evaluation of Strata NSC and Codman Hakim adjustable cerebrospinal fluid shunts and their corresponding antisiphon devices. Journal of Neurosurgery: Pediatrics, 2009, 3, 166-172.	1.3	13
53	Hydrodynamics of the Certasâ,, $^{\circ}$ programmable valve for the treatment of hydrocephalus. Fluids and Barriers of the CNS, 2012, 9, 12.	5.0	13
54	Effects of prostacyclin on the early inflammatory response in patients with traumatic brain injury-a randomised clinical study. SpringerPlus, 2014, 3, 98.	1.2	13

#	Article	IF	CITATIONS
55	Severe traumatic brain injury: consequences of early adverse events. Acta Anaesthesiologica Scandinavica, 2011, 55, 944-951.	1.6	11
56	SECTION VIII. TRH IN SHOCK AND SPINAL TRAUMA: Effects of TRH on Blood flow and the Microcirculation. Annals of the New York Academy of Sciences, 1989, 553, 353-369.	3.8	10
57	Tumor Blood Flow and the Cytotoxic Effects of Estramustine and Its Constituents in a Rat Glioma Model. Neurosurgery, 1997, 41, 237-244.	1.1	10
58	Prostacyclin Influences the Pressure Reactivity in Patients with Severe Traumatic Brain Injury Treated with an ICP-Targeted Therapy. Neurocritical Care, 2015, 22, 26-33.	2.4	10
59	Risk for intracranial pressure increase related to enclosed air in post-craniotomy patients during air ambulance transport: a retrospective cohort study with simulation. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 2017, 25, 50.	2.6	10
60	Naloxone and TRH affect regional blood flows in the anesthetized rabbit. Peptides, 1991, 12, 1273-1277.	2.4	9
61	Intracranial Pressure and Pulsatility Index. Neurosurgery, 2011, 69, E1033-E1034.	1.1	9
62	Risk factors for developing subdural hematoma: a registry-based study in 1457 patients with shunted idiopathic normal pressure hydrocephalus. Journal of Neurosurgery, 2020, , 1-10.	1.6	8
63	TRHâ€Induced blood flow and mean arterial pressure changes in the rabbit are not dependent on the anaesthetic used. British Journal of Pharmacology, 1989, 97, 190-196.	5.4	7
64	Intracranial Hypertension due to Cerebral Venous Sinus Thrombosis following Head Trauma: A Report of Two Cases. Case Reports in Neurology, 2013, 5, 168-174.	0.7	7
65	The Effect of the Calcium Antagonist Nimodipine on the Detoxification of Soman in Anaesthetized Rabbits. Journal of Pharmacy and Pharmacology, 2011, 49, 296-300.	2.4	6
66	Probabilistic prediction of increased intracranial pressure in patients with severe traumatic brain injury. Scientific Reports, 2022, 12, .	3.3	6
67	Effects of TRH and atropine on induction and duration of anesthesia with propofol in rats. Peptides, 1996, 17, 293-297.	2.4	5
68	Prostacyclin Affects the Relation Between Brain Interstitial Glycerol and Cerebrovascular Pressure Reactivity in Severe Traumatic Brain Injury. Neurocritical Care, 2019, 31, 494-500.	2.4	5
69	Cerebrospinal fluid lactate and neurological outcome after subarachnoid haemorrhage. Journal of Clinical Neuroscience, 2019, 60, 63-67.	1.5	5
70	Cerebrovascular Effects of the TRH Analogues pGlu-3-methyl-His-Pro Amide and pGlu-Glu-Pro Amide: A Comparison with TRH. Upsala Journal of Medical Sciences, 2000, 105, 73-84.	0.9	4
71	Nimodipine Affects the Microcirculation and Modulates the Vascular Effects of Acetylcholinesterase Inhibition. Upsala Journal of Medical Sciences, 2003, 108, 141-149.	0.9	4
72	Nitric oxide inhibition by L-NAME but not 7-NI induces a transient increase in cortical cerebral blood flow and affects the cerebrovasodilation induced by TRH. Peptides, 2003, 24, 579-583.	2.4	3

#	Article	IF	Citations
73	Intracranial Pressure Monitoring Using the Codman MicroSensor. Neurosurgery, 2010, 67, E221.	1.1	3
74	Postural stability in patients with chronic subdural hematoma. Acta Neurochirurgica, 2016, 158, 1479-1485.	1.7	3
75	The Influence of Bilateral Electrical Preganglionic Sympathetic Stimulation on Intra- and Extracranial Blood Flow. Upsala Journal of Medical Sciences, 1987, 92, 185-192.	0.9	2
76	Cerebral microvascular effects of nimodipine in combination with soman. Environmental Toxicology and Pharmacology, 2012, 34, 905-910.	4.0	2
77	Comment on: Early CSF and serum S 100B concentrations for outcome prediction in traumatic brain injury and subarachoid haemorrhage. Clinical Neurology and Neurosurgery, 2016, 150, 197-198.	1.4	2
78	APOE ε4 positive patients suffering severe traumatic head injury are more prone to undergo decompressive hemicraniectomy. Journal of Clinical Neuroscience, 2017, 42, 139-142.	1.5	2
79	Correlation of Cerebral and Subcutaneous Glycerol in Severe Traumatic Brain Injury and Association with Tissue Damage. Neurocritical Care, 2022, 36, 993-1001.	2.4	2
80	Leptin levels after subarachnoid haemorrhage are gender dependent. SpringerPlus, 2016, 5, 667.	1.2	1
81	Analysis of Codman microcerebrospinal fluid shunt. Brain and Behavior, 2018, 8, e01002.	2.2	1
82	Refeeding syndrome: multimodal monitoring and clinical manifestation of an internal severe neurotrauma. Journal of Clinical Monitoring and Computing, 2021, 35, 569-576.	1.6	1
83	Intrasellar pressure in patients with pituitary adenoma – relation to tumour size and growth pattern. BMC Neurology, 2022, 22, 82.	1.8	1
84	The neuropeptide TRH has a minor effect on the enzymatic activity of acetylcholinesterase in vitro. Peptides, 1998, 19, 1675-1677.	2.4	0
85	In Reply. Neurosurgery, 2010, 67, E1864.	1.1	0
86	CSF Drainage. , 2012, , 285-287.		0
87	CSF Drainage. , 2020, , 429-432.		0