Thomas Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/886991/publications.pdf

Version: 2024-02-01

195 papers 2,900 citations

172457 29 h-index 197818 49 g-index

195 all docs

195
docs citations

195 times ranked 1708 citing authors

#	Article	IF	Citations
1	Photonic Microwave Frequency Measurement With High Accuracy and Sub-MHz Resolution. Journal of Lightwave Technology, 2022, 40, 2748-2753.	4.6	13
2	High-Bandwidth Arbitrary Signal Detection Using Low-Speed Electronics. IEEE Photonics Journal, 2022, 14, 1-7.	2.0	13
3	Emulation of integrated high-bandwidth photonic AWG using low-speed electronics. , 2022, , .		1
4	Analysis of the effect of jitter and non-idealities on photonic digital-to-analog converters based on Nyquist pulses. , 2022, , .		0
5	Compact and Energy-Efficient Forward-Biased PN Silicon Mach-Zehnder Modulator. IEEE Photonics Journal, 2022, 14, 1-7.	2.0	5
6	Reconfigurable and real-time high-bandwidth Nyquist signal detection with low-bandwidth in silicon photonics. Optics Express, 2022, 30, 13776.	3.4	11
7	High-Bandwidth, Analogue-to-Digital Conversion for THz Communication Systems. Springer Series in Optical Sciences, 2022, , 331-340.	0.7	1
8	Modulation Format Aggregation of Nyquist channels by Spectral Superposition with Electro-Optic Modulators. , 2022, , .		3
9	Temporal Disentanglement of Wireless Signal Carriers Based on Quasi-Light-Storage. Journal of Lightwave Technology, 2022, 40, 6762-6768.	4.6	4
10	CMOS-Compatible Photonic Phase Shifters With Extremely Low Thermal Crosstalk Performance. Journal of Lightwave Technology, 2021, 39, 2113-2122.	4.6	14
11	Analysis of Non-Idealities in the Generation of Reconfigurable Sinc-Shaped Optical Nyquist Pulses. IEEE Access, 2021, 9, 76286-76295.	4.2	13
12	High-speed Silicon Mach-Zehnder Modulator with Corrugated Waveguides for Data Center Interconnects. , 2021, , .		1
13	Benefits of Spectral Property Engineering in Distributed Brillouin Fiber Sensing. Sensors, 2021, 21, 1881.	3.8	8
14	Agnostic sampling transceiver. Optics Express, 2021, 29, 14828.	3.4	19
15	Effect of Thermal Crosstalk on Travelling-wave Mach-Zehnder Modulator. , 2021, , .		0
16	Brillouin-scattering-induced transparency enabled reconfigurable sensing of RF signals. Photonics Research, 2021, 9, 1486.	7.0	11
17	Roll-Off Factor Analysis of Optical Nyquist Pulses Generated by an On-Chip Mach-Zehnder Modulator. IEEE Photonics Technology Letters, 2021, 33, 1189-1192.	2.5	10
18	Characterization of non-idealities in optical Nyquist pulses for THz signal sampling metrology. , 2021, , .		0

#	Article	IF	Citations
19	High Modulation Efficiency Segmented Mach-Zehnder Modulator Monolithically Integrated with Linear Driver in 0.25 $\hat{A}\mu m$ BiCMOS Technology. , 2021, , .		3
20	Dynamic Range Extension in Slope-Assisted Brillouin Optical Time-Domain Analyzers with Gain Spectrum Engineering. , $2021, $, .		0
21	Athermal Travelling Wave Mach-Zehnder Modulators for Optical Interconnects. , 2021, , .		1
22	Slow Light Enabled Temporal Frequency Discriminator. , 2021, , .		1
23	Study of Stimulated Brillouin Scattering-Initiated Noise in Distributed Brillouin Sensing. , 2021, , .		0
24	Optical PRBS Generation with Threefold Bandwidth of the Employed Electronics and Photonics. , 2021, , .		1
25	Low Bandwidth Detection of High Data Rate Nyquist Signals. , 2021, , .		0
26	Stimulated Brillouin Scattering-Induced All-Optical Spectrum Sensing. , 2021, , .		1
27	Modulator-based sinc-sequence sampled time and frequency multiplexed QAM signal transmission. , 2021, , .		0
28	Integrated High-Resolution Optical Spectrum Analyzer With Broad Operational Bandwidth. IEEE Photonics Technology Letters, 2020, 32, 1061-1064.	2.5	5
29	Design and Simulation of Thermo-Optic Phase Shifters With Low Thermal Crosstalk for Dense Photonic Integration. IEEE Access, 2020, 8, 141632-141640.	4.2	21
30	Gain Spectrum Engineering in Slope-Assisted Dynamic Brillouin Optical Time-Domain Analysis. Journal of Lightwave Technology, 2020, 38, 6967-6975.	4.6	11
31	Characterization of the Noise Induced by Stimulated Brillouin Scattering in Distributed Sensing. Sensors, 2020, 20, 4311.	3.8	5
32	Photonic Arbitrary Waveform Generation With Three Times the Sampling Rate of the Modulator Bandwidth. IEEE Photonics Technology Letters, 2020, 32, 1544-1547.	2.5	15
33	Optimizing Brillouin Optical Time-Domain Analyzers Based on Gain Spectrum Engineering. Journal of Visualized Experiments, 2020, , .	0.3	0
34	Simultaneous enhancement of dynamic range and sensitivity in slope-assisted Brillouin optical time-domain analyzers via gain spectrum engineering. , 2020, , .		1
35	Investigation on the excess noise in Brillouin optical time domain analysis due to stimulated Brillouin scattering. , 2020, , .		1
36	Integrated group delay units for real-time reconfigurable spectrum sensing of mm-wave signals. Optics Letters, 2020, 45, 4778.	3.3	14

#	Article	IF	Citations
37	Stimulated Brillouin Scattering based Optical Signal Processing. , 2020, , .		O
38	Nyquist Data Transmission with Threefold Bandwidth of the Utilized Modulator. , 2020, , .		1
39	Measurement Accuracy Enhancement via Radio Frequency Filtering in Distributed Brillouin Sensing. Sensors, 2019, 19, 2878.	3.8	14
40	Nonlinearity- and dispersion- less integrated optical time magnifier based on a high-Q SiN microring resonator. Scientific Reports, 2019, 9, 14277.	3.3	17
41	Photonic Components for Signal Generation and Distribution for Large Aperture Radar in Autonomous Driving. Frequenz, 2019, 73, 399-408.	0.9	0
42	Gain Spectrum Engineering in Distributed Brillouin Fiber Sensors. Journal of Lightwave Technology, 2019, 37, 5231-5237.	4.6	17
43	Orthogonal Full-Field Optical Sampling. IEEE Photonics Journal, 2019, 11, 1-9.	2.0	17
44	Eight-Channel Silicon-Photonic Wavelength Division Multiplexer With 17 GHz Spacing. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-10.	2.9	28
45	Optical Signal Generation and Distribution for Large Aperture Radar in Autonomous Driving. , 2019, , .		8
46	Modular Wideband High Angular Resolution 79 GHz Radar System. , 2019, , .		6
47	Sinc-shaped, Nyquist Channel Demultiplexing with Silicon Photonics. , 2019, , .		0
48	Precise, High-Bandwidth Digital-to-Analog Conversion by Optical Sinc-Pulse Sequences. , 2019, , .		1
49	Photonically synchronized large aperture radar for autonomous driving. Optics Express, 2019, 27, 1199.	3.4	16
50	Integrated all optical sampling of microwave signals in silicon photonics. , 2019, , .		0
51	Improvement of the measurement accuracy of distributed Brillouin sensing via radio frequency filtering. , 2019, , .		3
52	Measurement accuracy enhancement of distributed Brillouin sensors based on gain spectrum engineering., 2019,,.		3
53	Investigation on the working point of slope-assisted dynamic Brillouin distributed fiber sensing. , 2019, , .		2
54	Integrated source-free all optical sampling with a sampling rate of up to three times the RF bandwidth of silicon photonic MZM. Optics Express, 2019, 27, 29972.	3.4	29

#	Article	IF	CITATIONS
55	Optical convolution with a rectangular frequency comb for almost ideal sampling. , 2019, , .		5
56	Dispersionless time-lens with an integrated silicon nitride ring resonator. , 2019, , .		0
57	Dispersion measurement via a microwave photonic notch filter based on stimulated Brillouin scattering. , $2019, \ldots$		1
58	Photonically synchronized radar for advanced driver assistance systems. , 2019, , .		0
59	Investigation of the Dispersion Effect on Stimulated Brillouin Scattering based Microwave Photonic Notch Filters. , 2018, , .		0
60	The Influence of Dispersion on Stimulated-Brillouin-Scattering-Based Microwave Photonic Notch Filters. Journal of Lightwave Technology, 2018, 36, 5145-5151.	4.6	13
61	Fourier-based solving approach for the transport-of-intensity equation with reduced restrictions. Optics Express, 2018, 26, 11458.	3.4	13
62	Sharp tunable and additional noise-free optical filter based on Brillouin losses. Photonics Research, 2018, 6, 132.	7.0	37
63	Dispersion engineering with stimulated Brillouin scattering and applications. , 2018, , .		0
64	All-optical sampling without optical source. Proceedings of SPIE, 2017, , .	0.8	1
65	Analytical model for the analysis of the electromagnetic field in grating couplers. , 2017, , .		0
66	Precise Optical Frequency Shifting Using Stimulated Brillouin Scattering in Optical Fibers. IEEE Photonics Technology Letters, 2017, 29, 1467-1470.	2.5	3
67	Detrimental Effects in Brillouin Distributed Sensors Caused By EDFA Transient. , 2017, , .		7
68	Effects of pump pulse extinction ratio in Brillouin optical time-domain analysis sensors. Optics Express, 2017, 25, 27896.	3.4	26
69	Is the Rayleigh-Sommerfeld diffraction always an exact reference for high speed diffraction algorithms?. Optics Express, 2017, 25, 30229.	3.4	11
70	Frequency-time coherence for all-optical sampling without optical pulse source. Scientific Reports, 2016, 6, 34500.	3.3	25
71	Investigation of Gain Dependent Relative Intensity Noise in Fiber Brillouin Amplification. Journal of Lightwave Technology, 2016, 34, 3930-3936.	4.6	16
72	Combined Optical and Electrical Spectrum Shaping for High-Baud-Rate Nyquist-WDM Transceivers. IEEE Photonics Journal, 2016, 8, 1-11.	2.0	10

#	Article	IF	CITATIONS
73	Ultra-high resolution spectroscopy of optical frequency combs. Proceedings of SPIE, 2016, , .	0.8	O
74	Frequency-Time Coherence for All-Optical Sampling. , 2016, , .		1
75	Attometer resolution spectral analysis based on polarization pulling assisted Brillouin scattering merged with heterodyne detection. Optics Express, 2015, 23, 26879.	3.4	27
76	Advanced applications of stimulated Brillouin scattering in optical communications., 2015,,.		0
77	Optical spectrum analysis with kHz resolution based on polarization pulling and local oscillator assisted Brillouin scattering. , 2015, , .		0
78	Generation of highly stable millimeter waves with low phase noise and narrow linewidth. , 2015, , .		0
79	Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing. Optical Engineering, 2015, 55, 031110.	1.0	43
80	Generation of Highly Stable Millimeter Waves With Low Phase Noise and Narrow Linewidth. IEEE Photonics Technology Letters, 2015, 27, 1613-1616.	2.5	5
81	Fiber-laser frequency combs for the generation of tunable single-frequency laser lines, mm- and THz-waves and sinc-shaped Nyquist pulses. Proceedings of SPIE, 2015, , .	0.8	2
82	Ultrahigh-Bitrate Wireless Data Communications via THz-Links; Possibilities and Challenges. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36, 159-179.	2.2	28
83	Generation and Stabilization of THz-waves with Extraordinary Low Line Width and Phase Noise. , 2015, ,		0
84	Quasi-light Storage for Optical Data Packets. Journal of Visualized Experiments, 2014, , e50468.	0.3	1
85	Flexible Nyquist Pulse Sequence Generation With Variable Bandwidth and Repetition Rate. IEEE Photonics Journal, 2014, 6, 1-8.	2.0	32
86	Flat, rectangular frequency comb generation with tunable bandwidth and frequency spacing. Optics Letters, 2014, 39, 1637.	3.3	21
87	Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering. Photonics Research, 2014, 2, B18.	7.0	90
88	Broadening-free stimulated Brillouin scattering-based slow and fast light in optical fibers. Optical Engineering, 2014, 53, 102710.	1.0	0
89	Ultra-narrow line-width, stable and widely tuneable laser source for coherent optical communication systems. , 2014, , .		2
90	Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy. Optics Letters, 2014, 39, 5826.	3. 3	120

#	Article	IF	Citations
91	Towards highest spectral efficiency: Optical sinc-shaped Nyquist pulses generation from rectangular frequency comb. , $2014, \ldots$		O
92	Broadening-free SBS-based slow and fast light in optical fibers. Proceedings of SPIE, 2014, , .	0.8	0
93	Optical sinc-shaped Nyquist pulses of exceptional quality. Nature Communications, 2013, 4, 2898.	12.8	195
94	Matching p-i-n-junctions and optical modes enables fast and ultra-small silicon modulators. Optics Express, 2013, 21, 16210.	3.4	26
95	Frequency-selective filtering and analysis of radio-over-fiber using stimulated Brillouin scattering. , 2013, , .		1
96	Tunable generation of ultra-narrow linewidth millimeter and THz-waves and their modulation at 40 Gbd. , 2013 , , .		1
97	Tunable microwave-photonic filter using frequency-to-time mapping-based delay lines. Optics Express, 2013, 21, 21702.	3.4	13
98	Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise. Optics Express, 2013, 21, 23950.	3.4	42
99	Brillouin optical spectrum analyzer monitoring of subcarrier-multiplexed fiber-optic signals. Applied Optics, 2013, 52, 6179.	1.8	2
100	Proposal for the Tunable All Optical Storage of QAM Data Packets. , 2013, , .		1
101	Tunable storage of optical data packets modulated in spectrally efficient formats. Proceedings of SPIE, 2013, , .	0.8	0
102	Generation of Nyquist sinc pulses using intensity modulators. , 2013, , .		24
103	Optical sinc-shaped Nyquist pulses with very low roll-off generated from a rectangular frequency comb., 2013,,.		4
104	Measuring the Spectra of Advanced Optical Signals with an Extension of an Electrical Network Analyzer., 2013,,.		1
105	Optical sinc-shaped Nyquist pulses with very low roll-off generated from a rectangular frequency comb., 2013,,.		4
106	Highly tunable method to generate sinc-shaped Nyquist pulses from a rectangular frequency comb. , 2013, , .		2
107	Frequency domain aperture for the gain bandwidth reduction of stimulated Brillouin scattering. Optics Letters, 2012, 37, 930.	3.3	43
108	Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling. Optics Express, 2012, 20, 14734.	3.4	55

#	Article	IF	CITATIONS
109	Fully-tunable microwave photonic filter with complex coefficients using tunable delay lines based on frequency-time conversions. Optics Express, 2012, 20, 22728.	3.4	14
110	Bandwidth reduction in a multistage Brillouin system. Optics Letters, 2012, 37, 4122.	3.3	50
111	Continuously variable long microwave-photonic delay of arbitrary frequency-chirped signals. Optics Letters, 2012, 37, 3939.	3.3	3
112	All optical tunable storage of phase-shift-keyed data packets. Optics Express, 2012, 20, 18224.	3.4	11
113	Increasing the Resolution of Optical Spectrometers for the Measurement of Advanced Optical Communication Signals., 2012,,.		2
114	Compact Electrically Tunable Delay Generator on Silicon., 2012,,.		2
115	Link Budget Analysis for Terahertz Fixed Wireless Links. IEEE Transactions on Terahertz Science and Technology, 2012, 2, 250-256.	3.1	215
116	Long Microwave-Photonic Variable Delay of Linear Frequency Modulated Waveforms. IEEE Photonics Technology Letters, 2012, 24, 200-202.	2.5	8
117	Maximum transmittable data rates for Millimeter-wave fixed wireless links. , 2012, , .		3
118	Low-Distortion Long Variable Delay of Linear Frequency Modulated Waveforms. IEEE Photonics Journal, 2012, 4, 499-503.	2.0	2
119	A Review to the All-Optical Quasi-Light Storage. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 884-890.	2.9	10
120	Frequency Domain Aperture for Ultra-High Resolution Brillouin Based Spectroscopy., 2012,,.		3
121	System concept and implementation of a mmW wireless link providing data rates up to 25 Gbit/s. , 2011, , .		17
122	Methods for the enhancement of the storage time in Quasi-Light-Storage. , 2011, , .		0
123	Ultrahigh-Resolution Spectroscopy Based on the Bandwidth Reduction of Stimulated Brillouin Scattering. IEEE Photonics Technology Letters, 2011, 23, 1118-1120.	2.5	29
124	Managing the resolution bandwidth in Brillouin based spectroscopy., 2011,,.		1
125	Quasi-light-storage enhancement by reducing the Brillouin gain bandwidth. Applied Optics, 2011, 50, 4252.	2.1	18
126	Brillouin scattering gain bandwidth reduction down to 34MHz. Optics Express, 2011, 19, 8565.	3.4	101

#	Article	IF	CITATIONS
127	All Active MMIC-Based Wireless Communication at 220 GHz. IEEE Transactions on Terahertz Science and Technology, 2011, 1, 477-487.	3.1	188
128	Very Simple Tunable Optical Data Storage of 8Bit 1Gbps Data Packets Up to 500ns., 2011,,.		1
129	Integration of a Tunable, Optical Delay Generator in a Silicon Photonics Platform. , 2011, , .		0
130	Saturation and Delay in Broadband Brillouin Slow-Light., 2011, , .		0
131	Tunable Light-Storage for almost 1 Microsecond., 2011,,.		0
132	Light Storage Enhancement by Reducing the Brillouin Bandwidth., 2011,,.		0
133	Very large, tunable, positive and negative group delay for high-bandwidth signals. , 2010, , .		2
134	Almost distortion free storage of 1Gbps/8bit optical packets for up to 100 bit lengths. , 2010, , .		1
135	Widely tunable optical delay generator. Optics Letters, 2010, 35, 3592.	3.3	7
136	Quasi-Light Storage: A Method for the Tunable Storage of Optical Packets With a Potential Delay-Bandwidth Product of Several Thousand Bits. Journal of Lightwave Technology, 2010, 28, 2586-2592.	4.6	30
137	Nonlinear Brillouin based slow-light system for almost distortion-free pulse delay. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 544.	2.1	9
138	Comparative investigation of zero-broadening methods in Brillouin based slow-light systems. , 2009, , .		1
139	Zero-broadening measurement in Brillouin based slow-light delays. Optics Express, 2009, 17, 797.	3.4	21
140	Pulse broadening cancellation in cascaded slow-light delays. Optics Express, 2009, 17, 7586.	3.4	12
141	Quasi-Light-Storage based on time-frequency coherence. Optics Express, 2009, 17, 15790.	3.4	49
142	Gain enhancement in multiple-pump-line Brillouin-based slow light systems by using fiber segments and filter stages. Applied Optics, 2009, 48, 5583.	2.1	0
143	Dispersion Compensation by SBS Based Slow-Light in an Optical Fiber. , 2009, , .		1
144	Gain Enhancement in Slow-Light Systems Based on Stimulated Brillouin-Scattering with Several Short Fibers. , 2009, , .		1

#	Article	IF	CITATIONS
145	Zero-Broadening, Zero-Distortion SBS-based Slow Light – an Overview. , 2009, , .		O
146	1.4 Bit Delay and Pulse Compression Based on Brillouin Optical Signal Processing. , 2009, , .		1
147	Time delay limits of stimulated-Brillouin-scattering-based slow light systems. Optics Letters, 2008, 33, 1398.	3.3	41
148	Distortion reduction in Slow Light systems based on stimulated Brillouin scattering. Optics Express, 2008, 16, 8280.	3.4	30
149	Zero-broadening and pulse compression slow light in an optical fiber at high pulse delays. Optics Express, 2008, 16, 15617.	3.4	30
150	High resolution spectroscopy on optical signals in fiber communication systems. , 2008, , .		1
151	Numerical investigation of Brillouin based double sideband amplification for millimeter-wave generation. , 2008, , .		0
152	Group velocity dispersion reduction in fibre-based slow-light systems via stimulated Brillouin scattering. Electronics Letters, 2008, 44, 1185.	1.0	5
153	1 Gbit/s radio over fiber downlink at a 32 GHz carrier. , 2008, , .		0
154	Fast and simple high resolution optical spectrum analyzer. , 2008, , .		1
155	32 GHz carrier generation and 200 Mbit/s error free data transmission in a radio over fibre system. , 2008, , .		0
156	Optimisation of optical signal delay in slow-light systems based on stimulated brillouin scattering. , 2008, , .		1
157	Delay Limits of SBS based Slow Light. , 2008, , .		0
158	Optimization of the Brillouin spectrum for fiber based slow light systems. , 2008, , .		1
159	Investigation of fast light in long optical fibers based on stimulated Brillouin scattering. , 2007, , .		0
160	Adapting Brillouin spectrum for slow light delays. Electronics Letters, 2007, 43, 682.	1.0	9
161	Slow and Fast-Light in optical fibers & amp; #x2019; An overview., 2007,,.		1
162	Investigation of fast light in long optical fibers based on stimulated Brillouin scattering., 2007,,.		0

#	Article	IF	Citations
163	Time delay enhancement in stimulated-Brillouin-scattering-based slow-light systems. Optics Letters, 2007, 32, 220.	3.3	44
164	Comparison of delay enhancement mechanisms for SBS-based slow light systems. Optics Express, 2007, 15, 9606.	3.4	46
165	High Quality Millimeter Wave Generation via Stimulated Brillouin Scattering. , 2007, , .		3
166	Gain-independent SBS based Slow Light in optical Fibers. , 2007, , .		0
167	Enhancement of maximum time delay in one fiber segment slow light systems based on stimulated Brillouin scattering., 2007,,.		1
168	Brillouin scattering in optical fibers for high resolution wavelength and line width measurements. , 2006, , .		1
169	Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1012.	2.1	51
170	Potential ultra wide slow-light bandwidth enhancement. Optics Express, 2006, 14, 11082.	3.4	45
171	Investigation of Brillouin scattering in optical fibers for the generation of Millimeter waves. Journal of Lightwave Technology, 2006, 24, 295-304.	4.6	70
172	Electromagnetically-coupled microstrip-fed planar monopole. Microwave and Optical Technology Letters, 2006, 48, 108-110.	1.4	3
173	Distortion reduction in cascaded slow light delays. Electronics Letters, 2006, 42, 1110.	1.0	30
174	A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties. IEEE Transactions on Microwave Theory and Techniques, 2006, 54, 1576-1581.	4.6	22
175	Optical spectrum analyzer with femtometer resolution. , 2006, , .		0
176	Flexible Brillouin Bandwidth Broadening for an Amplification, Filtering or Millimeter Wave Generation Systems. , 2006, , .		0
177	Wavelength and line width measurement of optical sources with femtometre resolution. Electronics Letters, 2005, 41, 1234.	1.0	40
178	Nonlinear optical effects for the generation of millimeter wave signals. , 2005, , .		1
179	Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems. Electronics Letters, 2004, 40, 1500.	1.0	56
180	Nonlinear Optics in Telecommunications. Advanced Texts in Physics, 2004, , .	0.5	92

#	Article	IF	CITATIONS
181	Influence of an ultrafast transient refractive-index grating on nonlinear optical phenomena. Physical Review A, 2002, 65, .	2.5	16
182	Femtosecond all-optical wavelength and time demultiplexer for OTDM/WDM systems. Applied Physics B: Lasers and Optics, 2002, 74, s205-s208.	2,2	3
183	Femtosecond third-harmonic generation:. self-phase matching through a transient. Kerr grating and the way to ultrafast computing. Applied Physics B: Lasers and Optics, 2002, 74, 745-748.	2.2	12
184	Optical processing on a femtosecond time scale. Optics Communications, 2002, 207, 155-160.	2.1	20
185	Efficient self phase matched third harmonic generation of ultrashort pulses in a material with positive dispersion. Applied Physics B: Lasers and Optics, 2001, 72, 563-565.	2.2	16
186	Femtosecond nonlinear optical characterisation of silicon wafers: the role of symmetry. Materials Science in Semiconductor Processing, 2001, 4, 241-243.	4.0	0
187	Nonlinear optical characterization of silicon wafers: in-situ detection of stacking faults and external stress., 2000, 3933, 62.		1
188	Nonlinear optical characterization of the surface of silicon wafers: In-situ detection of external stress. Solid-State Electronics, 2000, 44, 809-813.	1.4	2
189	Femtosecond index grating in barium flouride: efficient self-diffraction and enhancement of surface SHG. Applied Surface Science, 2000, 154-155, 565-570.	6.1	1
190	Ultrafast laser-induced index grating in transparent insulators. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 809-814.	1.4	8
191	Ultrafast optical switching by instantaneous laser-induced grating formation and self-diffraction in barium fluoride. Applied Physics B: Lasers and Optics, 1999, 68, 749-751.	2.2	34
192	Ultrafast Pump–Probe Second Harmonic Generation — Always a Reliable Tool to Study Surface Dynamics?. Physica Status Solidi A, 1999, 175, 177-182.	1.7	6
193	Ultrafast Transient Index Grating in Barium Fluoride. , 1999, , .		0
194	Simulation of Four-wave Mixing in Optical Fibers under Consideration of the Polarization States of the Waves. Journal of Optical Communications, 1998, 19, .	4.7	1
195	The State-of-the-Art of Brillouin Distributed Fiber Sensing. , 0, , .		19