
Md Azimul Haque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8869803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length. ACS Energy Letters, 2016, 1, 32-37.	8.8	752
2	CH ₃ NH ₃ PbCl ₃ Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector. Journal of Physical Chemistry Letters, 2015, 6, 3781-3786.	2.1	636
3	Inorganic Lead Halide Perovskite Single Crystals: Phaseâ€5elective Lowâ€Temperature Growth, Carrier Transport Properties, and Selfâ€Powered Photodetection. Advanced Optical Materials, 2017, 5, 1600704.	3.6	362
4	Perovskite Photodetectors Operating in Both Narrowband and Broadband Regimes. Advanced Materials, 2016, 28, 8144-8149.	11,1	260
5	Lightâ€Responsive Ionâ€Redistributionâ€Induced Resistive Switching in Hybrid Perovskite Schottky Junctions. Advanced Functional Materials, 2018, 28, 1704665.	7.8	169
6	The Role of Surface Tension in the Crystallization of Metal Halide Perovskites. ACS Energy Letters, 2017, 2, 1782-1788.	8.8	155
7	Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nature Communications, 2018, 9, 4299.	5.8	151
8	Metal Oxides as Efficient Charge Transporters in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602803.	10.2	147
9	Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection. Journal of Materials Chemistry C, 2016, 4, 8304-8312.	2.7	134
10	Halide Perovskites: Thermal Transport and Prospects for Thermoelectricity. Advanced Science, 2020, 7, 1903389.	5.6	129
11	2D Organic–Inorganic Hybrid Thin Films for Flexible UV–Visible Photodetectors. Advanced Functional Materials, 2017, 27, 1605554.	7.8	125
12	Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells. Solar Energy Materials and Solar Cells, 2015, 137, 6-14.	3.0	117
13	Selfâ€Healing and Stretchable 3Dâ€Printed Organic Thermoelectrics. Advanced Functional Materials, 2019, 29, 1905426.	7.8	115
14	Fast Crystallization and Improved Stability of Perovskite Solar Cells with Zn ₂ SnO ₄ Electron Transporting Layer: Interface Matters. ACS Applied Materials & Interfaces, 2015, 7, 28404-28411.	4.0	103
15	Facile Synthesis and High Performance of a New Carbazole-Based Hole-Transporting Material for Hybrid Perovskite Solar Cells. ACS Photonics, 2015, 2, 849-855.	3.2	99
16	High-Performance Ultraviolet-to-Infrared Broadband Perovskite Photodetectors Achieved via Inter-/Intraband Transitions. ACS Applied Materials & Interfaces, 2017, 9, 37832-37838.	4.0	91
17	A Photodetector Based on p-Si/n-ZnO Nanotube Heterojunctions with High Ultraviolet Responsivity. ACS Applied Materials & Interfaces, 2017, 9, 37120-37127.	4.0	85
18	Overcoming the Ambient Manufacturabilityâ€Scalabilityâ€Performance Bottleneck in Colloidal Quantum Dot Photovoltaics. Advanced Materials, 2018, 30, e1801661.	11.1	79

MD AZIMUL HAQUE

#	Article	IF	CITATIONS
19	Giant Humidity Effect on Hybrid Halide Perovskite Microstripes: Reversibility and Sensing Mechanism. ACS Applied Materials & Interfaces, 2019, 11, 29821-29829.	4.0	71
20	Efficient Photon Recycling and Radiation Trapping in Cesium Lead Halide Perovskite Waveguides. ACS Energy Letters, 2018, 3, 1492-1498.	8.8	70
21	Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction. ACS Applied Materials & Interfaces, 2017, 9, 35018-35029.	4.0	62
22	Processingâ€Performance Evolution of Perovskite Solar Cells: From Large Grain Polycrystalline Films to Single Crystals. Advanced Energy Materials, 2020, 10, 1902762.	10.2	50
23	Transition from Positive to Negative Photoconductance in Doped Hybrid Perovskite Semiconductors. Advanced Optical Materials, 2019, 7, 1900865.	3.6	47
24	Stable Bandgap-Tunable Hybrid Perovskites with Alloyed Pb–Ba Cations for High-Performance Photovoltaic Applications. Journal of Physical Chemistry Letters, 2019, 10, 59-66.	2.1	44
25	Role of Compositional Tuning on Thermoelectric Parameters of Hybrid Halide Perovskites. Journal of Physical Chemistry C, 2019, 123, 14928-14933.	1.5	37
26	Embedding 1D Conducting Channels into 3D Isoporous Polymer Films for Highâ€Performance Humidity Sensing. Angewandte Chemie - International Edition, 2018, 57, 11218-11222.	7.2	33
27	A 0D Leadâ€Free Hybrid Crystal with Ultralow Thermal Conductivity. Advanced Functional Materials, 2019, 29, 1809166.	7.8	32
28	Role of Dopants in Organic and Halide Perovskite Energy Conversion Devices. Chemistry of Materials, 2021, 33, 8147-8172.	3.2	23
29	Tuning the Thermoelectric Performance of Hybrid Tin Perovskites by Air Treatment. Advanced Energy and Sustainability Research, 2020, 1, 2000033.	2.8	20
30	Lowâ€Temperatureâ€Processed Colloidal Quantum Dots as Building Blocks for Thermoelectrics. Advanced Energy Materials, 2019, 9, 1803049.	10.2	19
31	Enhanced Thermoelectric Performance and Lifetime in Acid-Doped PEDOT:PSS Films Via Work Function Modification. ACS Applied Energy Materials, 2020, 3, 9126-9132.	2.5	19
32	Imaging Localized Energy States in Silicon-Doped InGaN Nanowires Using 4D Electron Microscopy. ACS Energy Letters, 2018, 3, 476-481.	8.8	15
33	Reduced ion migration and enhanced photoresponse in cuboid crystals of methylammonium lead iodide perovskite. Journal Physics D: Applied Physics, 2019, 52, 054001.	1.3	14
34	A Highly Conductive Conjugated Polyelectrolyte for Flexible Organic Thermoelectrics. ACS Applied Energy Materials, 2020, 3, 8667-8675.	2.5	11
35	Molecular Doping of a Naphthalene Diimide–Bithiophene Copolymer and SWCNTs for n-Type Thermoelectric Composites. ACS Applied Materials & Interfaces, 2021, 13, 411-418.	4.0	9
36	Backbone-driven host–dopant miscibility modulates molecular doping in NDI conjugated polymers. Materials Horizons, 2022, 9, 500-508.	6.4	8

0

#	Article	IF	CITATIONS
37	Crystal structure of hexakis(dimethyl sulfoxide-îº <i>O</i>)manganese(II) tetraiodide. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 1791-1793.	0.2	5
38	Imaging the Reduction of Electron Trap States in Shelled Copper Indium Gallium Selenide Nanocrystals Using Ultrafast Electron Microscopy. Journal of Physical Chemistry C, 2018, 122, 15010-15016.	1.5	4
39	The ultralow thermal conductivity and tunable thermoelectric properties of surfactant-free SnSe nanocrystals. RSC Advances, 2021, 11, 28072-28080.	1.7	4
40	Solar Cells: Overcoming the Ambient Manufacturabilityâ€6calabilityâ€Performance Bottleneck in Colloidal Quantum Dot Photovoltaics (Adv. Mater. 35/2018). Advanced Materials, 2018, 30, 1870260.	11.1	3
41	Halide Perovskites: Halide Perovskites: Thermal Transport and Prospects for Thermoelectricity (Adv.) Tj ETQq1 1	0.784314	rgBT /Overloc

42 Carrier Density Tuning in Tin-Lead Perovskites via N-type Molecular Doping., 0,,.